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1. Introduction 
 

The encryption algorithm MISTY1 is a 64-bit block cipher with 128-bit key, whose detailed 

specification was first published in Japan in 1996 [1] and then presented at the international 

workshop of Fast Software Encryption in 1997 [2]. Its design principles and security assessments by 

the designer can be also found in these papers. Needless to say, the designer did not insert any 

hidden weakness in MISTY1. MISTY1 has been, since then, publicly evaluated from both academic 

and practical viewpoints; no security flaws have been found. The second paper [2] is attached to this 

document for reference. MISTY1 has a variable number of rounds; we recommend an 8-round 

version, which is most commonly used in real applications.  

 

MISTY1 is one of the earliest block ciphers that were aimed at being suitable for software and 

hardware systems as well, particularly for low cost applications. It was designed so that practical 

encryption performance could be achieved even in heavy resource constraints. For instance, 

MISTY1 can be implemented with a very small RAM size (e.g. within 100 bytes) in software on 

cheap processors, and with a small number of gate counts and low power consumption (e.g. within 

10 K gates) in hardware.  

 

MISTY1 is now widely used in many commercial and governmental applications. In software, its 

target platforms range from 8-bit microprocessors for smart cards and 16-bit digital signal processors 

for wireless communication systems to high-end 32-bit and 64-bit processors for PKI applications. 

Also, encryption LSI’s with MISTY1 are being used in public transportation systems and high-speed 

network applications (e.g. hubs and routers). Recently the 3rd generation partnership project (3GPP) 

adopted a variant of MISTY1, which is called KASUMI, as a mandatory algorithm in the 

confidentiality and integrity mechanisms of the forthcoming W-CDMA systems. 

 

It is undoubted that 64-bit block ciphers will be eventually shifted to 128-bit block ciphers. However, 

it is also true that for the time being 64-bit block ciphers will coexist with 128-bit block ciphers 

because of market requirements of low cost implementation and message format compatibility. We 

believe that 64-bit block ciphers still are worthy of being standardized internationally and MISTY1 

is worthwhile. 

 

MISTY1 is a patented algorithm. However, the owner of its essential patent, Mitsubishi Electric 

Corporation, has declared that it will give a license without any loyalty fee. For more details, see 

http://www.mitsubishi.com/ghp_japan/misty/licensee.htm. 
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2. Security Analysis of MISTY1 
 

MISTY1 was designed on the basis of the theory of “provable security” against differential and 

linear cryptanalysis [3][4][5]. It was also carefully designed to withstand various cryptanalytic 

attacks that were known at the time of designing. The detailed design principles and methodologies 

of MISTY1 to balance its security and performance in various platforms can be found in [2]. 

 

Since the publication of MISTY1, many research efforts have been done for evaluating its security 

level; no security flaws of MISTY1 have been so far found for the recommended 8-round version. In 

this section we describe, among them, several results about security level of round-reduced versions 

of MISTY1 that were not fully covered by the designer’s papers. 

 

2.1 Higher order differential cryptanalysis 

Higher order differential cryptanalysis was proposed by Lai [6] and developed by Knudsen [7], 

which is effectively applicable to a block cipher whose algebraic degree is small. MISTY1 contains 

two look-up tables S7 and S9, both of which have a low algebraic degree, specifically 3 and 2, 

respectively. Although these look-up tables with the low algebraic degrees contribute to realizing 

small and fast hardware, it is also natural that many papers concentrated on higher order differential 

cryptanalysis of MISTY1. The best-known result among them is a successful attack of MISTY1 

reduced to five rounds without FL-functions [8]. However the algebraic structure of MISTY1 with 

FL-functions significantly varies according to the key value due to bit-wise AND/OR operations 

used in the FL-functions, and hence we believe that it is unlikely that higher order differential 

cryptanalysis can be applied to the full 8-round MISTY1 with FL-functions. 

 

2.2 Slide attack 

The slide attack, which was invented by Biryukov and Wagner [9], is applicable to a block cipher 

where the same subkey value is supplied to each round (or every n-th round). This attack was 

strongly motivated by related-key cryptanalysis introduce by Biham [10]. Since MISTY1 has a 

simple key scheduler for hardware reasons, it is also natural to pay an attention to related key 

cryptanalysis. The only known observation about related key attacks of MISTY1 is that, if all 

FL-functions are removed from MISTY1, the slide attack works when one of 65536 keys is used 

[11]. However, this attack is weaker than a trivial exhaustive key search to find one of the 65536 

keys and does not work for other keys. Also MISTY1 with FL-functions withstand this attack. Note 

that the slide attack is newer than MISTY1, but protection from related-key type cryptanalysis was 

one of the design principles of the key-scheduling algorithm of MISTY1.  
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2.3 Impossible differential cryptanalysis 

Impossible differential cryptanalysis is a recent attack, which was proposed by Biham and Shamir 

[12] after the motivation given by Knudsen in his paper about an analysis of DEAL cipher [13]. 

Impossible differential cryptanalysis pays attention to characteristic paths that never appear, and 

narrows possible key candidates using this information. This attack, revealed that any Feistel cipher 

with a bijective round function has impossible characteristic paths in five rounds, which enables us 

to distinguish the five round cipher from a randomly chosen permutation. This result is a good 

contrast to the Luby-Rackoff analysis that showed that a four round Feistel cipher with a 

pseudo-random round function is a pseudo-random permutation and hence is impossible to 

distinguish from a randomly given permutation. No results about impossible differential 

cryptanalysis specific to MISTY1 are known; just a general theory tells us that MISTY1 reduced to 

five rounds without FL-functions can distinguish from a randomly chosen permutation. However 

again due to the existence of the FL-functions, impossible characteristic paths become heavily 

dependent on the key value. We hence believe that it is extremely unlikely that impossible 

differential cryptanalysis is applicable to the full MISTY1. 

 

2.4 Luby-Rackoff style evaluation 

The Luby-Rackoff style evaluation of a block cipher is to look into (complexity theoretic) 

pseudo-randomness of the entire structure of the cipher assuming pseudo-randomness of its smallest 

components [14]. Several works are known about the Luby-Rackoff style security assessment of the 

“MISTY1-like” structure. Note that this type of analysis does not direct lead to an attack of a block 

cipher itself, since the security is asymptotically evaluated in terms of its block size and the 

attacker’s computational power is limited to polynomial time of its block size. On the other hand, 

meeting the pseudo-randomness criteria might be considered as an evidence of (sort of) soundness of 

the basic structure. It is known that purified and idealized “MISTY1-like” structure is a 

pseudo-random permutation when the number of rounds is five or more, if the smallest components, 

which correspond to the two loop-up tables S7 and S9, are assumed to be pseudo-random 

permutations. For more details, see [15]. 

 

2.5 Implementation attacks 

Implementational attacks, such as timing attacks and power analysis, are often powerful and realistic 

threats in smart card applications. Since MISTY1 is composed of logical operations and lookup 

tables only, it is easy to apply standard methods to avoid implementation weakness of block ciphers, 

for instance removing “jumps” or “variable-cycle instructions”, to MISTY1. However, differential 

power analysis is a much deeper attack using subtle hardware characteristics. We believe that it is 

too early to say any conclusive statements about resistance to differential power attack. 
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3. Implementation Analysis of MISTY1 
 

3.1 Software implementations 

The sample C source code attached to the designer’s paper [1] shows an example of straightforward 

implementation based on the description of MISTY1. There are however many more techniques for 

implementing MISTY1 in software balancing speed and memory requirements. The designer and 

developers of MISTY1 have published several results about how to implement MISTY1 on various 

processors [16][17][18]. Here we describe further updated software performance information on 

MISTY1. 

For instance, it is not difficult to see that the 

FI-function can be also written as shown in fig.1, 

where S9A and S9B are newly introduced 

look-up tables that transform 9 and 7 input bits 

into 16 output bits, respectively. Note that the 

subkey Kij1 can be “embedded” into other 

subkeys. Though implementing this form 

requires more memory than the straightforward 

method, but faster speed is expected. Moreover, 

noting that the number of possible varieties of 

Kij2 is only eight, we can even remove the 

subkey by introducing eight different S9A 

tables if a target processor has on-chip cache of 

16K bytes or more. 

Table 1 summarizes implementation results of 

MISTY1 on Pentium II processor.  

 

 

Implementation Method Language Key Setup Time Encryption Time 

Straightforward C 170 cycles 450 cycles/block = 56.25 cycles/byte 

Fig.1 with Kij2 C 300 cycles 300 cycles/block = 37.50 cycles/byte 

Fig.1 without Kij2 (self modified code) Assembly 8700 cycles 190 cycles/block = 23.75 cycles/byte 

 

Table 1: Software Performance of MISTY1 (Pentium II 500MHz 128MB Memory / Windows 98) 
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Fig 1: An Alternative Form of FI 
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For another implementation example, Sano et al. showed a software implementation of MISTY1 on 

a typical 8-bit microprocessor Z80 [19]. According the paper, MISTY1 can be implemented on the 

processor in 1598 ROM bytes and 44 RAM bytes. It worked in 25486 cycles for one block 

encryption with key scheduling, which is approximately 5 msec in 5 MHz. This result shows that 

MISTY1 is highly practical in smart card applications. Note that this implementation is based on a 

straightforward method. Further speeding-up can be expected in return for some increase in ROM 

size by using the above reduction form. 

 

3.2 Hardware implementations 

MISTY1 is suitable not only for high-speed applications but also for low cost applications with 

small number of gate counts and low power consumption. MISTY1 is composed of only two small 

basic components, namely the FI-function and the FL-function. Hence by using repeatedly these 

functions one can design small hardware. The designer and developers of MISTY1 have published 

several results about how to implement MISTY1 on various processors [20][21]. 
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Fig 2: Hardware Structure of MISTY1 

 
A recent example of hardware implementation of MISTY1 realizes 7.6 Kgates at an encryption 

speed of 72Mbit/sec, which can encrypts one block plaintext in 35 cycles. Another implementation 

works at an encryption speed of 800Mbps in approximately 50Kgates, whose structure is able to 

encrypt one block plaintext in one cycle (see fig.2). Both circuits, which contain full encryption, 

decryption and key-scheduling functions without pipeline architecture --- hence feedback modes can 

be applied ---, were designed using Mitsubishi’s 0.35-micron ASIC design library and evaluated as a 

worst-case speed. We believe that this is in the smallest and fastest level among currently used 

secure 64-bit block ciphers. 
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4. Further Information of MISTY1 
 

As was written in the first section, MISTY1 is now used in various real applications. Including some 

of them, information of MISTY1 and related encryption technology can be seen at 

http://www.security.melco.co.jp/.  
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Abstract. We propose secret-key cryptosystems MISTY1 andMISTY2,
which are block ciphers with a 128-bit key, a 64-bit block and a variable
number of rounds. MISTY is a generic name for MISTY1 and MISTY2.
They are designed on the basis of the theory of provable security against
di�erential and linear cryptanalysis, and moreover they realize high speed
encryption on hardware platforms as well as on software environments.
Our software implementation shows that MISTY1 with eight rounds can
encrypt a data stream in CBCmode at a speed of 20Mbps and 40Mbps on
Pentium/100MHz and PA-7200/120MHz, respectively. For its hardware
performance, we have produced a prototype LSI by a process of 0.5�
CMOS gate-array and con�rmed a speed of 450Mbps. In this paper, we
describe the detailed speci�cations and design principles of MISTY1 and
MISTY2.

1 Fundamental Design Policies of MISTY

Our purpose of designing MISTY is to o�er secret-key cryptosystems that are
applicable to various practical systems as widely as possible; for example, soft-
ware stored in IC cards and hardware used in fast ATM networks. To realize
this, we began its design with the following three fundamental policies:

1. MISTY should have a numerical basis for its security,
2. MISTY should be reasonably fast in software on any processor,
3. MISTY should be su�ciently fast in hardware implementation.

For the �rst policy, we have adopted the theory of provable security against
di�erential and linear cryptanalysis [1][2][4], which was originally introduced by
Kaisa Nyberg and Lars Knudsen. As far as we know, MISTY is the �rst block
encryption algorithm designed for practical use with provable security against
di�erential and linear cryptanalysis. Although this advantage does not mean
information theoretic provable security, we believe that it is a good starting
point for discussing secure block ciphers.

Secondly, we have noticed the fact that many recent block ciphers were de-
signed so that they could be fastest and/or smallest on speci�c targets; for
example, 32-bit microprocessors. This often results in slow and/or big imple-
mentation on other types of processors. Since we regarded seeking applicability
to various systems as more important than pursuing maximum performance on
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speci�c targets, we decided to design a cipher that could be reasonably fast and
small on any platform, and hence not to adopt software instructions that are
e�ective on special processors only.

For the last policy, we should note that DES is reasonably fast in both soft-
ware and hardware, while many recent ciphers are seriously slow and/or big when
they are implemented in hardware because of their software-oriented structure.
On the other hand, since one of our target systems is a fast ATM network of
several hundreds Mbps, which cannot be reached in software for the present,
we have carefully optimized the look-up tables of MISTY from the viewpoint of
its hardware performance. It should be also noted that, in general, a choice of
substitution tables does not signi�cantly a�ect their software execution speed;
i.e. memory access time.

2 Discussions on Basic Operations

In this section we classify basic operations that are frequently used in block
ciphers into four categories and discuss their applicability to MISTY in terms of
compatibility between their security level and software/hardware e�ciency.

{ Logical Operations

Logical operations such as AND, OR and especially XOR are most com-
mon components of secret-key ciphers and are clearly small and fast in any
software or hardware system. However we cannot expect much security of
them.

{ Arithmetic Operations

Arithmetic operations such as additions, subtractions and sometimes multi-
plications are also commonly used in software-oriented ciphers because they
can be carried out by one instruction on many processors and fairly con-
tribute to their security. However, in hardware, their e�ect on data di�usion
is not necessarily high enough, considering their encryption speed, since their
delay time due to carry-spreading is often long and expensive.

{ Shift Operations

Shift operations, especially rotate-shifting, are frequently used in designing
secret-key ciphers. They indirectly improve data di�usion, and in hardware
they are obviously cheap and fast if the number of shift counts is �xed. We
should note, however, that software performance of shift operations heavily
depends on their target size; for instance, when a rotate shift of 32-bit data
is executed on 8-bit or 16-bit microprocessors, its speed may be quite slow.

{ Look-up Tables

In software, e�ciency of loop-up tables strongly depends on memory access
speed. In early microprocessors, memory access was much more expensive
than register access, while many recent processors can read from and write to
memory in one cycle (or often less than one cycle due to parallel processing)
under certain conditions. On the other hand, in hardware, the use of ROM
is slow in general, but if the tables are optimized for direct construction
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by logic gates, their delay time can be drastically reduced. Moreover, as for
the security, the look-up table method clearly contributes to data di�usion
e�ectively.

Taking the above discussion into consideration, we have concluded that logical
operations and look-up tables arranged in terms of security level and hardware
performance meet our design policies and hence they are desirable as basic com-
ponents of MISTY.

3 Theory of Provable Security

This section brie
y summarizes the theory of provable security against di�eren-
tial and linear cryptanalysis. For more detail, see [4]. This theory forms a basis
of the security of MISTY.

De�nition 1. Let Fk(x) be a function with an n-bit input x and an `-bit pa-
rameter k. We de�ne average di�erential probability DPF and average linear
probability LP F of the function F as

DPF def
=

1

2`

X
k

max
�x6=0;�y

#fxjFk(x)� Fk(x ��x) = �yg

2n
; (1)

LPF def
=

1

2`

X
k

max
�x;�y 6=0

�
2
#fxjx � �x = Fk(x) � �yg

2n
� 1

�2
; (2)

respectively. We also apply this de�nition to a function F (x) without the pa-
rameter k by setting ` = 0.

When Fk(x) is an encryption function with a key k, DPF and LPF represent a
strict level of security of the function against di�erential and linear cryptanalysis,
respectively. Since we can prove that F is secure against the two attacks when
these values are small, we say that F is provably secure if DPF and LPF are
proved to be su�ciently small.

The following three theorems give relationships between average di�eren-
tial/linear probability of a \small" function and that of a \large" function that
is a combination of the small functions. That is to say, using these theorems, we
can construct a \large and strong" function from \small and strong" functions.
Theorem 2 was �rst proved for average di�erential probability by Nyberg and
Knudsen [1], and then shown for average linear probability by Nyberg [2].

Theorem2. In �gure 1, assume that each fi is bijective and DP
fi (resp. LP fi)

is smaller than p. If the entire function Fk (k = k1jjk2jjk3:::) shown in the �gure
has at least three rounds, then DP F (resp. LPF ) is smaller than p2.

Note: The authors of [1] originally proved 2p2 (not p2) for a cipher with bijective
fi and at least three rounds, and for a cipher with any fi and at least four rounds.
Recently Aoki and Ohta improved this bound to p2 when fi is bijectvie [3].
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We proved in [4] that the above theorem is valid for the algorithm shown in
�gure 2. An essential di�erence between �gures 1 and 2 is that the functions fi
can be processed in parallel in �gure 2, and consequently the structure of �gure
2 is faster than that of �gure 1.

Theorem3. In �gure 2, assume that each fi is bijective and DP
fi (resp. LP fi)

is smaller than p. If the entire function Fk (k = k1jjk2jjk3:::) shown in the �gure
has at least three rounds, then DPF (resp. LPF ) is smaller than p2.

We found that a similar formula holds even if the input string is divided into two
strings of unequal bit length. Speci�cally, consider the algorithm shown in �gure
3, where the input string is divided into n1 bits and n2 bits (n1 � n2). Now
assuming that in odd rounds the right n2-bit string is zero-extended to n1 bits
before XOR-ed with the left n1-bit string, and in even rounds the right n1-bit
string is truncated to n2 bits before XOR-ed with the left n2-bit string, we have
the following general theorem [4]:

Theorem4. In �gure 3, assume that each fi is bijective and DP fi (resp. LP fi)
is smaller than p. If the entire function Fk (k = k1jjk2jjk3:::) shown in the �gure
has at least three rounds, then DPF (resp. LPF ) is smaller than

maxfp1p2; p2p3; 2
n1�n2p1p3g: (3)

k

k
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Figure 1. Figure 2. Figure 3.
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4 Design of the Data Randomizing Part

In this section we discuss the structure of the data randomizing part of MISTY.
For a complete description of MISTY1 and MISTY2, see an appendix.

4.1 The Framework

Our basic strategy in designing the data randomizing part of MISTY is to build
the entire algorithm from small components using the methods shown in the
previous section recursively. This enables us to easily evaluate the security level
of the total algorithm by that of the small ones. For instance, let us apply the
structure of �gure 2 recursively to all fi functions given in �gure 2. In this case,
if the average di�erential/linear probability of the smallest function is less than
p, we can prove from theorem 3 that the probability of the entire algorithm is
less than p4.

Now by applying theorem 2 or theorem 3 to a 64-bit block cipher, where
theorems 2 and 3 correspond to MISTY1 and MISTY2, respectively, we have a
\small" function with 32-bit input/output, which is called an FO function in
MISTY (�gure 4). Next by applying theorem 2 again to the FO function, we
have a \smaller" function with 16-bit input/output, which is referred to as an
FI function in MISTY. Since the size of the FI function is still big to use as a
look-up table, we have divided the 16-bit string into 9 bits and 7 bits, not 8 bits
and 8 bits, using the algorithm given in �gure 3.

This unequal division is due to the fact that bijective functions of odd size are
generally better than those of even size from the viewpoint of provable security
against di�erential and linear cryptanalysis. More speci�cally, when the size n
of a function is odd, the possible minimal value of its average di�erential/linear
probability is proved to be 2�n+1, but when it is even, it is only conjectured that
the possible minimal value is 2�n+2 (an open problem). Therefore, if we divide
the 16-bit into 8 bits and 8 bits, the average di�erential/linear probability of the
entire 64-bit cipher is proved to be less than (((2�8+2)2)2)2=2�48 (on condition
that the above conjecture is correct), while if we divide it into 9 bits and 7 bits,
then we can guarantee that the probability is less than ((2�9+12�7+1)2)2=2�56

from theorem 4 whenever all subkey bits are independent.
This shows that an unequal division generally has an advantage for secu-

rity against di�erential and linear cryptanalysis. On the other hand, it has two
penalties in implementation; the �rst is an obstruction to parallel computation,
and the second is a decrease in software performance caused by handling data
with an odd number of bits. We have nevertheless adopted the unequal division
because of its security. In the following, we refer to the �rst and third functions
of the lowest level as S9, and the second function as S7, which are \smallest"
components of MISTY. For reducing the size of software, we use the same table
in the �rst and third rounds.

In both MISTY1 andMISTY2, for the sake of 
exibility of their security level,
the number of rounds n of level 1 (see �gure 4) is variable on condition that n
is a multiple of four, while that of levels 2 and 3 is �xed to three rounds. Now
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compare encryption/decryption speed of MISTY1 and MISTY2. If we do not
take any parallel processing into consideration, the total complexity of MISTY1
and MISTY2 with the same number of rounds is clearly the same; however if
we allow parallel computations, their encryption speed is not the same. This is
mainly because MISTY1 can carry out two FI's at a time, while MISTY2 can
execute four FI's in parallel.

Table 1 gives encryption/decryption time of MISTY1 and MISTY2, where
each entry shows the number of calculations of S9 assuming the computation
time of S7 is the same as that of S9. For simplicity we have ignored the time
for XOR operations. It is clearly seen from table 1 that MISTY2 is faster than
MISTY1 in encryption, but MISTY1 is faster in ECB and CBC decryption.
This is because parallel computations are impossible in inverse calculation of
MISTY2. MISTY2 is therefore suitable for OFB and CFB modes.

Encryption Decryption Decryption
ECB,CBC,OFB,CFB ECB,CBC OFB,CFB

n-round MISTY1 3n 3n 3n
n-round MISTY2 1:5n 9n 1:5n

Table 1. Encryption/Decryption time of MISTY1 and MISTY2
(number of calculations of S9).

FI

FI

FI

S9

S7

S9

FO

FO

FO

FO

FO

FO

MISTY1 Level1 MISTY2 Level1

FO Level2

FI Level3

32 32 32 32

16 16

9 7

(n rounds) (n rounds)

(3 rounds)

(3 rounds)

Figure 4: Recursive structure of MISTY
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4.2 S7 and S9

In selecting S7 and S9, we have the following three criteria:

1. Their average di�erential/linear probability must be minimal,
2. Their delay time in hardware is as short as possible,
3. Their algebraic degree is high, if possible.

For the �rst criterion, a sequence of power functions over �nite �elds is known
to attain the minimal value (that is, 2�6 for S7 and 2�8 for S9), and as far as we
know, this is the only example that can be obtained in a systematic way. Hence
we �rst planned to investigate the hardware delay, whose exact de�nition we
adopted will be given below, for all functions that have the form Si(x) = A�x��B
(i = 7; 9), where A and B are arbitrary bijective linear transformations and � is
an integer such that (2i�1; �) = 1. The last equality is a necessary and su�cient
condition that a power function can be bijective.

However, because it was time-consuming for us to calculate the delay for all
functions above, we next restricted our search to the functions that have the form
Si(x) = A � x� (i = 7; 9) and have a polynomial basis or a normal basis over
GF (2). In other words, we investigated all possible linear transformations for
A and a limited number of linear transformations for B. Note that the average
di�erential/linear probability does not depend on a selection of A or B, but the
delay does. Now the following is our formal de�nition of the hardware delay and
the algebraic degree of Si(x):

De�nition 5. For a function y = f (x) with an i-bit input x = (x0; x1; x2; :::; xi�1)
and a j-bit output y = (y0; y1; y2; :::; yj�1), we call the following equation an al-
gebraic normal form of the a-th output bit ya of f :

ya = e(a;0) +
X

0�k1<i

e
(a;1)
k1

xk1 +
X

0�k1<k2<i

e
(a;2)
k1;k2

xk1xk2

+
X

0�k1<k2<k3<i

e
(a;3)
k1;k2;k3

xk1xk2xk3 + ::::; (4)

where e(a;0),e
(a;1)
k1

,e
(a;2)
k1;k2

, e
(a;3)
k1;k2;k3

.... are binary values, and the sum
P

denotes
an XOR operation.

The hardware length of ya is de�ned as the number of non-zero terms of
equation 4, and the hardware length of the function f is the maximal hardware
length of all output bits of f . Also, the algebraic degree of ya is de�ned as the
maximal degree of equation 4, and the algebraic degree of the function f is the
maximal algebraic degree of all output bits of f .

Note that the hardware length of ya minus 1 is equivalent to the number of two-
input XOR gates required for constructing ya from xk (0 � k � i) in hardware,
and the logarithm of the hardware length of f indicates its hardware delay time.
Although we have to count the number of AND gates and fan-outs to see the
exact delay time in hardware, we have adopted the above de�nition for simplicity.
Also note that the algebraic degree of Si(x) = A �x� �B agrees with the binary
hamming weight of �.
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Selection of S7

For all functions having the form A � x� over GF (27) with a polynomial or
normal basis and (27 � 1; �) = 1, we �rst calculated the algebraic degree and
hardware length of each output bit; as a result, we obtained the following:

{ If the algebraic degree is at least 4, then the hardware length of any output
bit is at least 21.

{ If the algebraic degree is equal to 3, then the hardware length of any output
bit is at least 10.

{ If the algebraic degree is equal to 2, then the hardware length of any output
bit is at least 7.

Since we regarded the length as too long when the algebraic degree is four or
more, we decided to adopt a function whose algebraic degree is equal to three.
Then for all functions whose algebraic degree is three, we calculated their entire
hardware length, and found that the minimal length is 13 and the function that
attains this length is unique up to the order of output bits. Lastly, by adding a
constant value to its output, we determined the �nal form of S7, whose concrete
logic is as follows:

y0 = x0+x1x3+x0x3x4+x1x5+x0x2x5+x4x5+x0x1x6+x2x6+x0x5x6+x3x5x6+1
y1 = x0x2+x0x4+x3x4+x1x5+x2x4x5+x6+x0x6+x3x6+x2x3x6+x1x4x6+x0x5x6+1
y2 = x1x2 + x0x2x3 + x4 + x1x4 + x0x1x4 + x0x5 + x0x4x5 + x3x4x5 + x1x6 + x3x6+

x0x3x6 + x4x6 + x2x4x6

y3 = x0 + x1 + x0x1x2 + x0x3 + x2x4 + x1x4x5 + x2x6 + x1x3x6 + x0x4x6 + x5x6 + 1
y4 = x2x3+x0x4+x1x3x4+x5+x2x5+x1x2x5+x0x3x5+x1x6+x1x5x6+x4x5x6+1
y5 = x0 + x1 + x2 + x0x1x2 + x0x3 + x1x2x3 + x1x4 + x0x2x4 + x0x5 + x0x1x5+

x3x5 + x0x6 + x2x5x6

y6 = x0x1 + x3 + x0x3 + x2x3x4 + x0x5 + x2x5 + x3x5 + x1x3x5 + x1x6 + x1x2x6+

x0x3x6 + x4x6 + x2x5x6

Selection of S9

Similarly, for all functions having the form S9(x) = A � x� over GF (29) with a
polynomial or normal basis and (29� 1; �) = 1, we �rst calculated the algebraic
degree and hardware length of each output bit; as a result, we had the following:

{ If the algebraic degree is at least 3, then the hardware length of any output
bit is at least 27.

{ If the algebraic degree is equal to 2, then the hardware length of any output
bit is at least 9.

Since we regarded the length as too long if the algebraic degree is three or more,
we decided to adopt a function whose algebraic degree is equal to two. Then for
all functions whose algebraic degree is two, we calculated their entire hardware
length, and found that the minimal length is 12 and there are nine functions
that attain this length up to the order of output bits. Lastly by selecting one of
them randomly and adding a constant value to its output, we determined the
�nal form of S9, whose concrete logic is as follows:
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y0 = x0x4 + x0x5 + x1x5 + x1x6 + x2x6 + x2x7 + x3x7 + x3x8 + x4x8 + 1
y1 = x0x2+x3+x1x3+x2x3+x3x4+x4x5+x0x6+x2x6+x7+x0x8+x3x8+x5x8+1
y2 = x0x1 + x1x3 + x4 + x0x4 + x2x4 + x3x4 + x4x5 + x0x6 + x5x6 + x1x7 + x3x7 + x8

y3 = x0 + x1x2 + x2x4 + x5 + x1x5 + x3x5 + x4x5 + x5x6 + x1x7 + x6x7 + x2x8 + x4x8
y4 = x1 + x0x3 + x2x3 + x0x5 + x3x5 + x6 + x2x6 + x4x6 + x5x6 + x6x7 + x2x8 + x7x8

y5 = x2 + x0x3 + x1x4 + x3x4 + x1x6 + x4x6 + x7 + x3x7 + x5x7 + x6x7 + x0x8 + x7x8

y6 = x0x1+x3+x1x4+x2x5+x4x5+x2x7+x5x7+x8+x0x8+x4x8+x6x8+x7x8+1
y7 = x1+x0x1+x1x2+x2x3+x0x4+x5+x1x6+x3x6+x0x7+x4x7+x6x7+x1x8+1

y8 = x0+x0x1+x1x2+x4+x0x5+x2x5+x3x6+x5x6+x0x7+x0x8+x3x8+x6x8+1

4.3 The function FL

For the purpose of avoiding possible attacks other than di�erential and linear
cryptanalysis, we have supplemented an additional simple function FL, whose
design criteria are (1) to be a linear function for any �xed key and (2) to have
a variable form depending on a key value.

Since this function is linear as long as the key is �xed, it does not a�ect
the average di�erential/linear probability of the entire algorithm. Moreover, this
function is obviously fast in both software and hardware since it is constructed
by logical operations such as AND, OR and XOR only.

5 Design of the Key Scheduling Part

In designing the key scheduling part of MISTY, we set up the following criteria
from the viewpoint of compatibility between its security level and applicability
to various systems:

1. The size of key is 128 bits,
2. The size of subkey is 256 bits,
3. Every round is a�ected by all key bits,
4. Every round is a�ected by as many subkey bits as possible.

For security reasons we have adopted the 128-bit key, and for practical reasons
we have limited the size of the subkey to 256 bits. Reducing the size of subkey has
two important performance advantages. The �rst advantage can be obtained in
systems whose resources are limited such as in IC cards. In these systems, since
RAM size for temporary use is usually strictly limited, it is generally impossible
to store all subkey bits in RAM if its size is large; hence we have to carry out
the key scheduling part in every data block, which could be a heavy penalty on
performance. We decided to choose subkeys of 256 bits, so that all the bits could
be stored in RAM even for extremely restricted software environments.

The second advantage comes from the fact that in microprocessors with many
integer registers such as RISC processors, the 256-bit subkey can be loaded
completely into the registers. In most implementation of block ciphers, all subkey
bits are written into memory in key scheduling process, and in encryption process
they are read from the memory round by round. Hence if all the subkey bits are
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kept in the registers during the entire encryption process, the total performance
is expected to be signi�cantly improved.

On the other hand, in compensation for this small number of subkey bits
and simple key scheduling algorithm, we have established the third and fourth
design criteria. In MISTY, an FO function and an FL function use 112 subkey
bits and 32 subkey bits, respectively. To generate the 112 subkey bits, all of 128
key bits are required. The number of total independent subkey bits of MISTY1
or MISTY2 with eight rounds, for example, is 1216.

6 Examples of Implementation of MISTY

In this section we show two examples of our software implementation and one
example of our hardware implementation of MISTY1 with eight rounds.

6.1 Pentium

Pentium has two independent integer execution units called U-pipe and V-pipe,
where the U-pipe is usually used for carrying out instructions. However some in-
structions can be also executed in the V-pipe while the U-pipe is being occupied
by special \pairable" instructions. Though the number of these pairable instruc-
tions is small, if we write a program so that these two pipes can be e�ciently
used, the performance of the software is extremely improved, possibly twice or
more due to resolution of register contentions.

We wrote an assembly language program of MISTY1 with eight rounds on
Pentium 100MHz, which encrypts an input plaintext stream in CBC mode at a
speed of 20Mbps. This is 30% faster than hightly optimized DES for Pentium.
The program heavily uses V-pipe because of the highly parallel structure of
MISTY; it takes approximately 300 cycles to process one block, where the U-
pipe has no idle time and the V-pipe is used in more than 95% of the 300 cycles.

6.2 PA-7200

PA-7200 can also execute two integer instructions at a time under various re-
strictions. Moreover PA-RISC series microprocessors have 32 integer registers,
almost all of which can be used freely by users; this means that it is easy to load
all 256-bit subkey information of MISTY, even every 16 bits in each register.

PA-7200 has 512KB on-chip cache (256KB for code and 256KB for data),
which enables us to reduce computational time of MISTY by having a big pre-
de�ned table. That is to say, we can make a 128KB table that represents the
�rst two rounds of the FI function in advance. By doing this, calculation of FI
is signi�cantly simpli�ed. Note that this technique cannot be used in Pentium
because Pentium has only small cache (8KB for data) which generally causes
serious penalty cycles due to cache misses.

We wrote an assembly language program of MISTY1 with eight rounds on
PA-7200 120MHz using the above techniques. It can encrypt an input plaintext
stream in CBC mode at a speed of 40Mbps.
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6.3 Hardware

We have also designed a prototype LSI of MISTY1 with eight rounds, which has
the following speci�cations:

Encryption Speed: 450Mbps (typical)
Clock: 14MHz
I/O: 32-bit parallel � 3 (plaintext, ciphertext, key)
Supported Modes: ECB,CBC,OFB-64,CFB-64
Design Process: 0.5� CMOS gate-array
Number of Gates: 65K gates
Package: 208-pin 
at package

This LSI has no repetition structure; that is, it contains the full hardware of
eight FO functions and ten FL functions. It takes two cycles to encrypt a 64-bit
plaintext. It also has three independent 64-bit registers that store a plaintext,
an intermediate text after the fourth round, and a ciphertext, respectively. This
structure makes the following pipeline data processing possible:

plaintext 1 plaintext 2 plaintext 3 plaintext 4
Cycles 1 and 2 Input
Cycles 3 and 4 Encryption Input
Cycles 5 and 6 Output Encryption Input
Cycles 7 and 8 Output Encryption Input

7 Conclusions

This paper proposed new secret-key block cryptosystems MISTY1 and MISTY2.
At present, the author recommends to use MISTY1 with eight rounds, and to
use MISTY2, which has a newer structure, with twelve rounds. The next four
pages show a complete and self-contained description of MISTY1 and MISTY2.
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Block Cipher Algorithms MISTY1 and MISTY2
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This document shows a complete description of encryption algorithms MISTY1
and MISTY2, which are secret-key ciphers with a 64-bit data block, a 128-bit
secret key and a variable number of rounds n, where n is a multiple of four.

Data Randomizing Part

{ Figure A and B show the data randomizing part of MISTY1 and MISTY2,
respectively: The 64-bit plaintext P is divided into the left 32-bit string and
the right 32-bit string, which are transformed into the 64-bit ciphertext C
by means of bitwise XOR operations denoted by � and sub-functions FOi

(1 � i � n) and FLi (1 � i � n+2). FOi uses a 64-bit subkey KOi and a
48-bit subkey KIi. FLi uses a 32-bit subkey KLi.

{ Figure C shows the structure of FOi: The input is divided into the left 16-bit
string and the right 16-bit string, which are transformed into the output by
means of bitwise XOR operations and sub-functions FIij (1� j�3), where
KOij (1�j�4) and KIij (1�j�3) are the j-th (from left) 16 bits of KOi

and KIi, respectively.
{ Figure D shows the structure of FIij : The input is divided into the left 9-bit
string and the right 7-bit string, which are transformed into the output by
means of bitwise XOR operations and substitution tables S7 and S9. In the
�rst and third XORs, the 7-bit string is zero-extended to 9 bits, and in the
second XOR, the 9-bit string is truncated to 7 bits by discarding its highest
two bits. KIij1 and KIij2 are the left 7 bits and the right 9 bits of KIij ,
respectively.

{ Figure E shows the structure of FLi. The input is divided into the left 16-bit
string and the right 16-bit string, which are transformed into the output by
means of bitwise XOR operations, a bitwise AND operation denoted by \
and a bitwise OR operation denoted by [, where KLij (1�j�2) is the j-th
(from left) 16 bits of KLi.

{ In the next page, the substitution tables S7 and S9 are shown in decimal
form.

Key Scheduling Part

{ Figure F shows the key scheduling part of MISTY1 and MISTY2: Ki (1�
i� 8) is the i-th (from left) 16 bits of the secret key K, and K 0

i (1� i� 8)
is the output of FIij when the input of FIij is assigned to Ki and the key
KIij is set to Ki+1, where K9 is identi�ed with K1.

{ The correspondence between the round subkeys KOij ,KIij ,KLij and the
actual subkeys Ki,K

0
i is as follows, where i is identi�ed with i�8 when i>8:

Round KOi1 KOi2 KOi3KOi4 KIi1 KIi2 KIi3 KLi1 KLi2

Actual Ki Ki+2 Ki+7 Ki+4 K0

i+5 K0

i+1 K0

i+3 K i+1

2

(odd i) K0

i+1

2
+6
(odd i)

K0

i

2
+2

(even i) K i

2
+4 (even i)
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Test Data of MISTY1 with eight rounds

Key (K1 to K8): 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff

Subkey (K0

1 to K
0

8): cf 51 8e 7f 5e 29 67 3a cd bc 07 d6 bf 35 5e 11

Plaintext: 01 23 45 67 89 ab cd ef

Ciphertext: 8b 1d a5 f5 6a b3 d0 7c

Table of S7

27, 50, 51, 90, 59, 16, 23, 84, 91, 26,114,115,107, 44,102, 73,

31, 36, 19,108, 55, 46, 63, 74, 93, 15, 64, 86, 37, 81, 28, 4,

11, 70, 32, 13,123, 53, 68, 66, 43, 30, 65, 20, 75,121, 21,111,

14, 85, 9, 54,116, 12,103, 83, 40, 10,126, 56, 2, 7, 96, 41,

25, 18,101, 47, 48, 57, 8,104, 95,120, 42, 76,100, 69,117, 61,

89, 72, 3, 87,124, 79, 98, 60, 29, 33, 94, 39,106,112, 77, 58,

1,109,110, 99, 24,119, 35, 5, 38,118, 0, 49, 45,122,127, 97,

80, 34, 17, 6, 71, 22, 82, 78,113, 62,105, 67, 52, 92, 88,125

Table of S9

451,203,339,415,483,233,251, 53,385,185,279,491,307, 9, 45,211,

199,330, 55,126,235,356,403,472,163,286, 85, 44, 29,418,355,280,

331,338,466, 15, 43, 48,314,229,273,312,398, 99,227,200,500, 27,

1,157,248,416,365,499, 28,326,125,209,130,490,387,301,244,414,

467,221,482,296,480,236, 89,145, 17,303, 38,220,176,396,271,503,

231,364,182,249,216,337,257,332,259,184,340,299,430, 23,113, 12,

71, 88,127,420,308,297,132,349,413,434,419, 72,124, 81,458, 35,

317,423,357, 59, 66,218,402,206,193,107,159,497,300,388,250,406,

481,361,381, 49,384,266,148,474,390,318,284, 96,373,463,103,281,

101,104,153,336, 8, 7,380,183, 36, 25,222,295,219,228,425, 82,

265,144,412,449, 40,435,309,362,374,223,485,392,197,366,478,433,

195,479, 54,238,494,240,147, 73,154,438,105,129,293, 11, 94,180,

329,455,372, 62,315,439,142,454,174, 16,149,495, 78,242,509,133,

253,246,160,367,131,138,342,155,316,263,359,152,464,489, 3,510,

189,290,137,210,399, 18, 51,106,322,237,368,283,226,335,344,305,

327, 93,275,461,121,353,421,377,158,436,204, 34,306, 26,232, 4,

391,493,407, 57,447,471, 39,395,198,156,208,334,108, 52,498,110,

202, 37,186,401,254, 19,262, 47,429,370,475,192,267,470,245,492,

269,118,276,427,117,268,484,345, 84,287, 75,196,446,247, 41,164,

14,496,119, 77,378,134,139,179,369,191,270,260,151,347,352,360,

215,187,102,462,252,146,453,111, 22, 74,161,313,175,241,400, 10,

426,323,379, 86,397,358,212,507,333,404,410,135,504,291,167,440,

321, 60,505,320, 42,341,282,417,408,213,294,431, 97,302,343,476,

114,394,170,150,277,239, 69,123,141,325, 83, 95,376,178, 46, 32,

469, 63,457,487,428, 68, 56, 20,177,363,171,181, 90,386,456,468,

24,375,100,207,109,256,409,304,346, 5,288,443,445,224, 79,214,

319,452,298, 21, 6,255,411,166, 67,136, 80,351,488,289,115,382,

188,194,201,371,393,501,116,460,486,424,405, 31, 65, 13,442, 50,

61,465,128,168, 87,441,354,328,217,261, 98,122, 33,511,274,264,

448,169,285,432,422,205,243, 92,258, 91,473,324,502,173,165, 58,

459,310,383, 70,225, 30,477,230,311,506,389,140,143, 64,437,190,

120, 0,172,272,350,292, 2,444,162,234,112,508,278,348, 76,450
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