

You are here						
Attacks & Defenses	Cryptography	Applied crypto				
 Risk assessment Viruses Unix security authentication Network security Firewalls.vpn.IPsec.IDS 	•Random numbers√	•SSH •PGP •S/Mime •SSL •Kerberos				
	•Hash functions√					
	MD5, SHA, RIPEMD					
	•Classical + stego√					
	•Number theory					
	•Symmetric key	•IPsec				
	DES, AES, RC5					
	•Public key					
CNS Lecture 5 - 3	RSA, DSA, D-H,ECC	S.C.				

- use substitution and permutation (SPN)
 assume algorithm known
- strength based on key
- resist cryptanalysis/statistical analysis
- diffusion -- spread statistics of plaintext into many bits of ciphertext one plaintext bit affects many ciphertext bits --permute and replace
- confusion -- use complex substitution to hide relation between key and ciphertext – bigger block (multiple characters) is better (playfair, hill)
- resist chosen plaintext attacks
- efficient (speed/memory)

manual \rightarrow machine/device \rightarrow computers

computers easily break classic schemes

CNS Lecture 5 - 4

(shared) secret key Bob and Alice share a secret or key **block**: DES, IDEA, CAST, RC5, Blowfieh, AES
ingrealente: (key, plaintext
pre-mik/expand key
break plaintext into block (e.g. & characters)
stir in some key bits and plaintext (block at a time)
stir in some more key bits, repeat N times for each block
BUT it's reversible!
stream: RC4, hash, one-time pad, LFSR's
Encrypt a character at a time
XOR plaintext with keystream c_i = p_i ⊕ k_i

CNS Lecture 5 - 5

Symmetric ciphers

1

How many rounds

- after 5 rounds: every ciphertext bit is a function of every plaintext and key bit
- after 8: ciphertext is a random function of plaintext and key
- reduced-rounds DES have been broken
 - -4 rounds broken in '82
 - -6 rounds broken in '86
- differential cryptanalysis broke anything less than 16 rounds with known plaintext attack -- more efficient than brute force

CNS Lecture 5 - 25

25

Copperamith DES paper • 6x4 largest that would fit on '74 technology

S box design

- no output bit should be too close to linear function of input bits
- fix bits 1 and 6, vary middle bits, each possible output bit should be produced
- If two inputs differ by 1 bit, output must differ in at least 2 bits
- if two inputs differ in middle 2 bits, output must differ in at least 2 bits
- if two inputs differ only in first 2 bits, outputs must not be the same

spent months deriving S boxes and P permutation

```
CNS Lecture 5 - 29
```

E7

rS
919
each

CNS Lecture 5 - 30

Weakness of key small key, brute force (see performance) brute force: 2⁵⁶ keys, 2²⁵ secs/yr ⇒ 2⁴⁵ guesses/mlp-yr 1000 years for a 1 mlp processor (or 1 Mguess/sec) I year for a 1 GHz/mlp processor 1 year for a 1 GHz/mlp processor 1 day for 365 1 GHz processor ... • special hardware for ksy gueseing (pipelined/parallel) • EFF DES oracker (\$250K): 3 days - amortized cost over 3 yrs, 8 cents per key - If your secret is worth more than 8 cents, don't use DES - EFF + net: 22 hour • NSA: 5 minutes ? • dictionary attacks ("the human factor") - 56 bits is 87-bit ASCI alphanumeric (8 x 5-bits/char = 40 bits) - drop low bit for parity, 32 bits -1

Þ **DES** cryptanalysis DES in software data structures: S boxes • differential ('90) ncrypt(key,plain,cipher) rtext pairs whose plaintext have particular differences xamine ciphe • messy in software (bit-based) recover key, bit by bit, round by round
 needs lots of chosen plaintext (2⁴⁷ pairs) expand key(key) //subkeys / rotate/permute in = permute1(plain) for i=1, rounds • use table lookups for S boxes - fewer than 16 rounds, susceptible - greater than 18 rounds, more work than brute-force • source available on the net out = rnd_fcn(in,subkey[i])
in = out S boxes optimized to thwart
 8 round attack: Lucifer 256 chosen plaintext, DES 2¹⁴ OpenSSL • linear ('93) -File encrypt/decrypt cipher = permute2(out) – linear approximation to action of block ciphers
 – XOR some plain and cipher text together, get a bit that is XOR of some of the key bits -API for encrypt/decrypt nd fcn(in, sk) needs lots of known plaintext (2⁴⁷)
 recovered a key in 50 days with 12 HP9735's L = left(in) R = right(in) X = L $\hat{F}(R, sk)$ L = R R = X These attacks are effective against any Felstel cipher and have a work-factor smaller than brute force, BUT you need lots of plaintext/ciphertext for the desired keyl Countermeasure: change key "often" return (LR) 3 CNS Lecture 5 - 33 CNS Lecture 5 - 34

CNS Lecture 5 - 32

3 DES performance

on cetus engine	•						
set_key	per	sec	=	118258.95	(8.5uS)	
DES raw ecb bytes	per	sec	=	2089940.80	(3.8uS)	
DES cbc bytes	per	sec	=	1959656.91	(4.1uS)	
DES ede cbc bytes	per	sec	=	739647.04	(1	0.8uS)	
crypt	per	sec	=	8297.39	(12	0.5uS)	
 hardware can pipeline so improved resistance to b Since '98 banks require 3 	3DES I rute fo SDES r	is not orce a ather	thai nd lii thai	t much elower than near/diff. cryptan n DES	1 DES alysie	5	

lucifer						
• Feistel, '70 IBM • DES predecessor • 128-bit blocks/key	Sub-keys Round ₁ : repeat first byte, append next 7 Round ₁ : rotate previous left by 7 bytes					
 16 rounds (key-dependent nibble swap, 64-bit permute) weak key schedule (72-bit sub-key/round) weak, 4x4 5 boxes weak against differential attacks 8 round attack Lucifer 256 chosen plaintext, DES 214 						
• longer key is not sufficient	S boxes Nibble 0 1 2 3 4 5 6 7 8 9 a b c d e f S0 c f 7 a e d b 0 2 6 3 1 9 4 5 8 S1 7 2 e 9 3 b 0 4 c d 1 a 6 f 8 5					
CNS Lecture 5 - 41						

• Large classes of weak keys -Could be fixed with better key schedule

CNS Lecture 5 - 48

CAST-128

Block-mode cipher summary

- ECB for single blocks (careful)
- CBC for multiple block (ECB and CBC need padding)
- stream/character based: OFB/CFB/CTR
- understand error properties
- -blocks re-ordered
- -error or modified cipher block (cipher bit flipped)
- -missing or duplicated/added block
- special requirements: parallel, disk encryption

encryption does not guarantee message integrity!

CNS Lecture 5 - 67

"different" opensel des-cbc -in letter.txt -out letter.des -k secret

openssl des-cbc -d -in letter.des -out tmp -k secret

• DES variante: des des-cbc des-cfb des-ecb des-ede des-ede-cbc des-ede cfb des-ede-ofb des-ede3 des-ede3-cbc des-ede3-cfb des-ede3-ofb des-ofb des3 desx

26

- Others: blowfish, AES, rc2, rc4, cast
- Key options: command line, file, or prompt -pass pass:secret
- Benchmark with speed command (or visit Crypto++ website)

CNS Lecture 5 - 68

