CNS
Lecture 5

Digital Encryption Standard (DES)

Other Feistel ciphers (Lucifer, blowfish, CAST)
Non-Feistel (IDEA, RCx)

Blocking (ECB,CBC,OFB,CTR)

assignments 4 and 5 and 6

In the news >
SHIE;

* Over 1,000 laptops missing from Commerce Dept since 01
* Massive growth in organized crime targeting home PCo

* DNS attack in China takes 180,000 web sites offline

* Purdue Univ. notifying students of possible data breach

* Stolen laptop holds data on 50,000 GE employees

CNS Lecture 5- 2 w

= You are here ...

Attacks & Defenses Cryptography
« Rigk assessmentv’
* Virusesv’

*Random numbersv’

*Hagh functionsy’
* Unix securityy”

* authenticationv’ MDS, SHARIPEMD

* Network security «Classical + stegov’

Firewalle,vpn,IPsec.IDS Number the: ory

*Symmetric key
DES, AES, RC5

*Public key

RSA, DSA, D-HECC
CNS Lecture 5- 3

Applied crypto
*SSH

PGP

*S/Mime

*SSL

*Kerberos

IPsec

ciphers

* use substitution and permutation (SPN)

* assume algorithm known

« strength based onkey

* regist cryptanalysis/statistical analysis
— diffusion -- spread statistics of plaintext into many bits of ciphertext

one plaintext bit affects many ciphertext bits --permute and replace
— confusion -- use complex substitution to hide relation between key and ciphertext
—bigger block (multiple characters) is better (playfair, hill)
—resist chosen plaintext attacks
« efficient (speed/memory)

manual = machine/device > computers

computers easily break classic schemes

ONS Lecture 5.- 4 By

Symmetric ciphers

(ghared) secret key
Bob and Alice share a secret or key

= block: DES, IDEA, CAST, RC5, Blowfish, AES
—ingredients: key, plaintext
— pre-mix/expand key
—break plaintext into block (e.g. & characters)
—stir in some key bits and plaintext (block at a time)
—stir in some more key bits, repeat N times for each block
—BUT it’s reversible!

 stream: RC4, hash, one-time pad, LFSR’s
—Encrypt a character at a time
—XOR plaintext with keystream ¢, =p @k

CNS Lecture 5- 5

DES roadmap

Digital Encryption Standard
* DES history

* DES invernals, Feistel ciphers

« DES design

« DES attacks

* DES AP, performarce

Crypto Toolkit

+secret-key crypto
*public-key crypto
*big-number math

srandom numbersv’
*prime numbers
*hash functionsv’

CNS Lecture 5- 6 w

DES history

* hodge-podge of incompatible crypto gear
* commercial interest in encryption
* NBS (NIST) 1972 call for proposale

Public encryption algorithm
=provide high security
<complete specification and easy to understand
*security NOT depend on algorithm secrecy
~available to all users
~adaptable for diverse applications
~economical for hardware implementation
~efficient
«able to be validated
=exportable

* based on IBM'e Lucifer cipher (Feistel)

« assisted (7) by NSA

« authorized for use in 76 (unclassified)

* details published (NSA migtake)--software
* Intent was hardware only

CNS Lecture 5- 7 ‘

Feistel ciper

ettt

I — XOR properties
(A®B) ®C=-28 (80 C)
A®A-=0
M
'“F'lh*'ﬁﬂ” 3
)

@T?:T?‘"T Mangler function F need not be reversible!
1

|

Decryption:
LD, =RD, = LE,; = RE
RD, =LD, & F(RDy,Ky¢)

Lnemn, EneL

0]

E""" ! By =RE; @ F(RE5,K,c)
-u-----lf i) = (LE,5 ® F(RE,;,Kyq)) @ F(RE5,K,)
Z =LE;
[e—
Flgere 2 bt Emerypivs smd Drcryplie
CNS Lecture 5- 9 u

Feistel ciphers

* basls of many digital ciphers
* key Is "expanded" Into subkeys (K,.K,...)
« input block is gplit into halves f =
* operate on one half each round then swap %
* multiple rounds
« eachround has same structure using a

mangler function F and a subkey and an XOR Wt TN

© -- substltute and permute i .
* output of one round I input to the next

* decryption uses same algortthm but with
subkeys in reverse order

* mangler function F need not be invertible

substitute

permute

Examples: DES, CAST, Blowfish, Lucifer

s e

Figmre 18 Clasical Feistel Network

CNS Lecture 5- 8 w

Strength vs speed

« bigger block size is stronger, but slower

« larger key is stronger, but slower

* more rounds are stronger, but slower

* complex mangler function is stronger

* subkey generation can effect strength, but it’s only done once

* choose operations to be efficient in software/hardware and easy
to analyze but hard to break

CNS Lecture 5 - 10 wr

Baby DES

5-DES, teaching zid (appendix C)

« Felstel cipher
* specs
—10-bit key
—&-bit input (split into 2x4)
—2 rounds
—2 S-boxes (4 bits in, 2 bits out)
« like DES, has beginning and ending permutation
« key expansion at start

256-character alphabet (ot just A-Z)

even if alphabetics In, lot of non-alphabetics out (e.g. Binary data)

CNS Lecture 5- 11 w

S-DES steps

* subkey generation -- use various combinations of key bits to
create subkeys for use in each round (key schedule)

* permute initial plain text (‘cause DES does)
*iterate feistel rounds
» final permutation (inverse of first)

ciphertext = IP(fi,(SW(f,, (IP(plaintext)))))

plaintext = IP1 (fi(SW(f,, (IP(ciphertext)))))

CNS Lecture 5- 12 w

frreTes

S-DES Generating subkeys

01000001

S-DES round

* split &-bit input in half (LK)
* expand 4 bits to 8 bite
* InF, Rls mixed with subkey then S-box substitution
* L is XOR’d with ouput of F
fir(LR) = (L ® F(R,5K).R)
* output halves are swapped for next round
animated applet

How would you do these in software:
—XOR
—Permutation and swapping
—substitution

E/P: 41232341
P4: 2431 ur

CNS Lecture 5- 14

10000 01100
00001 117
10100100 K,
00100 00011
01000011 K,
subkey applet
Fu—_— Fupure A3 K Gmeration fr Sevpiicd DES
permutations
P10:35274101986 P8:637485109
IP:26314857 IP1:41357286
CNS Lecture 5- 13 ‘
S boxes (Substitution)
* 2 S-boxes
* eachwith 16 2-bit values (pre-defined)
* 4-bit input selects 2-bit value (irreversible)
* provides strength, non-linearity (code book)
s0 s1
1 00 01 10 11
PO
777777777777 10 00 | 00 01 10 11
00 01 \ 10 00 01 11
11 10 | 11 00 01 00
10 11 \ 10 01 00 11
Spec: 4-bit input:\ bitg' 1 and 4 select row, bits 2 and 3 select column
Example: input = 0100 for SO, output 11
CNS Lecture 5 - 15 ur

DES basics
* block Felstel clpher (64 bits at a time)
—Mixing & p\aiﬁltext bytes at a time (Playfair, Hill) S-[[))Ess‘il:sﬁzjlz:;al ol
—not stream cipher (Caesar, one-time pad) st B
* uses 56 bits of a 64-bit key both useless initial/final permutation
* bit-oriented (slow in software) 64-bit block vs 8
* 16 rounds (iterative) 56 bit key vs 10

* output from previous round used as input to next 16 rounds vs 2

* key expanded into 16 pieces key expanded into 16 pieces vs 2
. permutztions 8 6-to-4 S boxes, Vs 2 4-to-2

* substitutions (S boxes), crypto strength

* can’t reverse the S box without key (many-to-one)

"good for 5 years*

Used for financial transactions, software (ssh, s,),
the algorithm of choice til AES

DES structure

* key expansion

=T SR e S e

« initial permutation of 64-bit input . !
(plaintext)) -E)

* 16 iterative rounds using different ; i
subkey each round ! !

« final permutation of 64-bit output -
(ciphertext)

* initial/ final permutations of no (=)
security value --slow down =
software 2

CNS Lecture 5- 17

NS Lecture 5 - 16 By
DES subkey generation =
key schedule * fa—

L — — /]
* 64-bit key

* discards parity bite (8,16.,...64)
* permutes remaining 56 bits into two 28-bit halves
* permutation is roughly a transpose (cols to rows)
permutation of no security value
* generate 16 48-bit keys k;, k,,..kig]
* iterative Ea:
* Tor 2 bit left rotate, then compression permutation
* 1-bit rotateinrounds 1,2,9, 16
« different subset of key bits used in each subkey
* set_key() insoftware

i

CNS Lecture 5- 18 w

DES permutations and subkeys

Wil 1. Prmmmtation P b B3 Talbe 1.4 DES Ky SeSnbule Calonlation

e

CNS Lecture 5- 19

DES round -- encryption

* 64-bit Input split L and R,
* mangler function F(Rk)
* mangler XOR’d with L, to produce Ry,
* R;becomes L4
L=R
Ri=Ly ®f(R.4K)

Decryption: start with cipher text and use subkeys in reverse order

CNS Lecture 5 - 20 w

mangler function (F)

« substitution (strength)
* Input is 32-hit Ry
* expansion permutation (E)*
32 > 48 bits
* 48-bit subkey XOR'd with output of £
* Sboxes (45> 32 bits)
—& 6-bit churks to 4-bit chunks
—S boxes are predefined tables -- where did these numbers come from?

* 32-bits are permuted (P), permutation insures S-box output will affect
multiple S-boxes in next round

*Note: E permutation is the one modified by UNIX pasewd crypt()

CNS Lecture 5- 21

DES S-box —

Table 18 Definiton of B9 8- L ==] [=]

Wigers 19 Cabiutation of FIR. K1

S-box (substitution)

48 hits in - 32 hits out, not reversible!
eight 6x4 S boxes (S, ... Sg)

6 bit input — outer two bits select row,

inner 4 bits select column > 4 bits out

CNS Lecture 5 - 22 wr

Designing a cipher (I 0

* looks simple
* shuffle bits around, mix in some key bits ...
« for DES

—permutations?

—Why 16 rounds?

—Why 56 bit keys?

—Why subkey generation?

—Why Feistel 7

—Why S-boxes 7

—Where did numbers in S boxes come from?

CNS Lecture 5 - 23

DES strengths

Table 18 Avalanche 1t DES

* expanslon permutation allows one bit
to effect two substitutions

* avalanche -- dependency of output
bits on input bite spread faster

* quickly have every ciphertext bit

depend on every Input bit and key bit i -
* B rounds are sufficient to eliminate ’
any ore ciphertext bit dependence on . .
subset of plaintext bits o

EYEEEREAYERE R,
EEMMEERBEEEEENY

CNS Lecture 5- 24 w

How many rounds

* after 5 rounds: every ciphertext bit is a function of every
plaintext and key bit
» after &: ciphertext Is a random function of plaintext and key
* reduced-rounds DES have been broken
—4 rounds broken in 62
—6 rounds brokenin’66

» differential cryptanalysis broke anything less than 16 rounds with
known plaintext attack -- more efficient than brute force

CNS Lecture 5- 25 W

DES controversy

Did NSA leave a backdoor?

* design decisions kept secret
* several congressional reviews

* Coppersmith paper reveals S-box design, knew about differential
cryptanalysis

* IBM says NSA didn’t mess with algorithm
* but IBM had recommended 112-bit key |

CNS Lecture 5- 27 w

S box design

Coppersmith DES paper

* x4 largest vhat would fit on*74 technology

* no output bit should be too close to linear function of input bits

» fixbits 1 and 6, vary middle bits, each possible output bit should be produced
« if two inputs differ by 1bit, output must differ in at least 2 bite

« if two inputs differ in middle 2 bits, output must differ in at least 2 bits

« if two inputs differ only in firet 2 bits, outputs must not be the same

spent months deriving S boxes and P permutation

subkeys

« Feistel needs subkey for each round
* subkey generation (key schedule)
—expand (no additional strength?)
—use different bits for each subkey
—make it difficult to deduce key from subkey
—OK to be slow
* should aid in avalanche

DES key expansion is wezk (a circular shift then a permutation)

CNS Lecture 5- 26

S boxes

« dll of the algorithims involved in DES are linear in binary arithmetic, if S-boxes
were also linear then:

c=Ap®Bk®b
A, B.b are fixed and k is the 56-bit key. Knowing one (p.c) pair, then
k=B"(c-Ap-B) (you could solve for the key, ki)
* S-boxes heed to be nonlinear
* 2x2 Sboxes are linear
* some 3x3 boxes are linear
* studies have shown none of DES S-boxes (6x4) are affine (linear)
- strict avalanche criterion any output bit j should change with
probability 1/2 when any input bit | is changed, for allij
= bit indepedence criterion ouput bits j and k should change
independently when any single input bit | is changed, for ij,k

CNS Lecture 5- 28 w

CNS Lecture 5 - 29 W

Alternatives for selecting S box values

* random numbers -- may lead to S boxes with unwanted
properties, maybe OK for large S boxes (8x32)

* random plus testing -- throw away bad ones

* man-made -~ basically what DES did, not practical for larger S
boxes

* math-made -- proven against linear/ differential cryptanalysis
(CAST, Bent functions, Rijndael analytical) plus testing

* key-based S boxes (Blowfish), like random, but different for each
keyl

CNS Lecture 5- 30 W

DES weaknesses Weakness of key

* test of time « small key, brute force (eee performance)
« lots of studies * brute force: 256 keys, 225 secs/yr P 24° guesses/mip-yr

1000 years for a 1 mip processor (or 1 Mguess/gec)
* key wezkresses (size)

1year for a1GHz/mip processor
« 16 weak keys (self-inverse)) [h1 djy for ;555 1GHz meﬁﬁ?ﬁdl o
)) * epecial hardware for uessing (pipelined/parallel

—encrypt with one = decrypt with other . Eléi DES comator ($2§yoa}<): s dgy(z pe! p)

* complement reduces keyspace 255 — amortized cost over 5 yrs, & cents per key
if y = DES(x) then y° = DES (X¢) — If your eecret Is worth more than & cents, don’t use DES
« alternatives to brute force key search - BFF + neti 22 hours
24 * NSA: 5 minutes 2
—consider trying to find key, given (plaintext,ciphertext) for 1-round DES + dictionary attacks (“the human factor”)
—differential cryptanalysis

— 56 bits is & 7-bit ASCII
—alphanumeric (& x 5-bits/char = 40 bits)
—drop low bit for parity, 32 bite

—linear cryptanalysis

CNS Lecture 5- 31

‘ CNS Lecture 5- 32 w
DES cryptanalysis DES in software
|data structures: S boxes
- differential ('90) .
— exarine ciphertext paire whose plaintext have particular differences , , ?“‘“’t Ry CErCE)
—recover key, bit by bit, round by round * messy In software (bn:—baeed) expand_key (key) //subkeys
—rneeds lots of chogen plaintext (247 pairs) « use table lookups for S boxes // rotate/permite
— fewer than 16 rounds, susceptible p ;::iz:m::s;;ﬂlam)
—greater than 18 rounds, more work than brute-force * source available on the net { !
—Sboxes optimized to thwart <0 SSL out = rnd fecn(in, subkey[il)
— & round attack: Lucifer 256 chosen plaintext, DES 21 pen Anfsout
« linear ('93) —File encrypt/decrypt cipher = permute2 (out)
—linear approximation to action of block ciphers _AP| for encrypt/ decrvpt
— XOR sorme plain and cipher text together, get abit that is XOR of some of the key P yp
bits lrnd_fen(in, sk)
—needs lots of known plaintext (247) L = left(im)
—recovered a key in 50 days with 12 HP9735’s R = right(in)
X = L " F(R,sk)
These attacks are effective againet an¥ Feigtel cipher and have a work-factor smaller L=R
thanbrute force, BUT youneed lots of plaintext/ciphertext for the desired keyl Bo
« - return (LR)
Countermeasure: change key “often 3
CNS Lecture 5- 33 B NS Lecture 5- 34 By
UNIX encryption Strengthening DES
* take advantage of existing DES hardware
* crypt(3) password hash function (modified DES) * take advantage of test-of-time of DES
—Uses 25 iterations of modified DES (EF is altered to thwart DES hardware cracker) * superencrypt
—Encrypts O using salt/password «double DES
—Encode 64-bit output to 6-bit alphanumerics encryption: m Ky K:
* crypt command dscWPﬂOH:[E;z((;m ((m)))) x
—Trotor enigma, polyalphabetic (256) ryprion: Vi Ve p—s{ E }— c
—key guessing Is there ak3 such that AL
—crypt breakers workbench (cbw) Eiz (Eiq (M) =Eyz (M) 2 K: K,
—commpression helps —DES defines 2°¢ < 10" mappings of 64-
bits to 64-bits out of possivle (264) = 3 X
(1010720 c—s{ D P
. 5etkc¥(). encrypt() -- DES functlons, key and mesoage expressed ae binary ASCI -- ARl
slow, Tbit per byte —thereis nok3 (DES not a group, '92) {a) Dosbla Eneryption
* Strong encryption: PGP, ssh, OpenSSL, kerberos, cfs « double encryption with two keys (112 bits), i
+ many packages use simple encryption not abig improvement -~ meet-in-the-
—guides to cracking onweb (WORD, wordperfect, PKZIF) middle attack requires only twice the
effort of single DES
CNS Lecture 5- 35 w CNS Lecture 5 - 36

3 K 9

Triple DES (3DES)

K, K: L]
triple DES: Ey (Dy, (Ey (M)))

. B o
- 12-bits « v

« decrypt: Dy (Ez (D (€) 43 Tl Ewypion
* compatible with DES if k1=k2 tharke to EDE

Ey (Dt (B (M) = Eyq (m)

* Bkey: Eys (D (Eiy (M)
—16& key bits
—compatible with DES if k1=k2 or k2 =k3
—used by PGP and S/MIME

CNS Lecture 5- 37

3 DES performance

speed.cin libdes (also see openssl spesd command)

on cetus engine

set_key per sec = 118258.95 (8.5us)
DES raw ecb bytes per sec = 2089940.80 (3.8us)
DES cbc bytes per sec = 1959656.91 (4.1us)
DES ede cbc bytes per sec = 739647.04 (10.8us)
crypt per sec = 8297.39 (120.5us)

* hardware can pipeline s0 BDES is not that much slower than DES
* improved resistance to brute force and linear/diff. cryptanalysie
* Since *96 barks require 3DES rather than DES

CNS Lecture 5- 38

DES-X

* DES extension (Rivest, '64)

* DESX 42 (M) =k2 @ DES, (K1 © m)

* 184 bit “key” (56 + 64 + 64)

« "whitening" keys k1 and k2

* magk plaintext, then ciphertext

*just as fast as DES, uses existing DES (e.g., hardware)

* brute force "impossible” 2164

* more plaintext/ciphertext required for linear and differential
cryptanalysis (220)

* using + instead of @ is even stronger against linear/ diff.

CNS Lecture 5- 39

DES - executive summary

* block cipher (64 bit)

* symmetric, secret key

* 56-bit key

* product cipher (combo of simple operations)

* substitution: 6x4 4-bit (S box) (strength)

* transposition: swap and permute

* 16 rounds

* awkward in software -- bit manipulation: permutation, shifte

why no nice mathematical representation?

CNS Lecture 5 - 40

lucifer

* Feistel, 70 [BM Sub-keys
* DES predecessor
* 128-bit blocks/key Round,; rotate previous left by 7 bytes
* 16 rounds (key-dependent ribble swap, 64-bit permute)
* weak key schedule (72-bit sub-key/round)
* weak,4x4 S boxes
* weak against differential attacks

& round attack: Lucifer 256 chosen plaintext, DES 2
* longer key i not sufficient

Round, : repeat first byte, append next 7

S boxes

Nibble 0123456789abcdef
S0 cf7aedb026319458
S1 72e93b04cdla6fss

CNS Lecture 5- 41

blowfish (Schneier)

* like DES (Feistel) (both halves)

« iterative (16 rounds)

* block cipher (64-bits)

« fast, 32-bit (worry about byte order)

* compact (6K)

* simple: add, XOR, lookups

* variably secure: key length up to 445 bits
» four &x32-bit S-boxes, 256 entries each

* key expansion builds 18 32-bit subkeys and four S-boxes (521 executions of
blowfish)

* slow subkey generation makes it bad for rapid key switching, but makes brute
force expensive

« initial value of S-boxes and subkeys Pare digits of pi
* twice ao fast as DES

* in OpenSSL

* AES candidate (twofish)

CNS Lecture 5 - 42

blowfish

addition (mod 252)
* Both L and R modified in a

CNS Lecture 5- 43

* Setup: generate sub-keys and 4 S-boxes
« Encryption/decryption uses XOR and

subkey/S-hox generation

Initialize 4 S-boxes and 18 subkeys P with pi

then XOR with key (repeating key s needed)

PyP; =Epsl0]
P3Py =EpslPyl| P;]

10841 = EpslPylIPyg
round

P17P1s = EpslPrslIPsel

SuzsuSu2ss = EpslSuznllSuzsil

Tigure 6.4 Decallof Single Blewfich Rosnd

twofish

* Son of blowfish, AES candidate

* Key schedule like blowfish

* Round function
—maximum distance separable
(MDS) matrix (6x32 bit table)

—pseudo-Hadamard transform
(PHT)a =a+b b =a+2b
—Addition, rotation

CNS Lecture 5 - 45

* 128-bit blocks, key up to 256 bits

* Pre/post whitening with key material
* Four key-dependent &x& bit S-boxes

oo Jon

i foe,

b $ox o
i S

CNS Lecture 5 - 47

*Key schedule insures no weak or semi-weak keys

CAST round
.’I — %
*Designed in early 90's to resist known attacks Lpoee T : o]
IR
*Design parameters: key/block size, number of ; /] Vo
rounds P -“"\'k] ':}' z '\ \
10} \
*Round functions selected to resist diff. /lin. i v\
cryptanalysis "~ ; =
-key-dependent rotate Ii - '.'1)
-round-dependent round functions) ‘\-\;...:'./)
*S-boxes deslgned to provide high avalanche and =
bit independence (select and test frombent
functions)

Blowfish vs DES

* S-boxes are key dependent produced by repeated applications of a “changing”
blowfish

* Subkey generation is very strong (but slow)
* Both halves of data mangled in each round

* Withkey of 448 bits, invulnerable to brute force attack, plus takes 522
executions of blowfish to test a single keyl

* Computationally efficient round (fast)

* No round-dependent F functions

* Function ¥ has perfect avalanche effect
—Every subkey bit is affected by every key bit
—Every bit of L, affects every bit of R

Test of time?

CNS Lecture 5- 44

CNS Lecture 5 - 46

* add/subtract modulo 222, XOR, rotates

* pre-defined &x32 S boxes based on Bent functions (highly
nonlinear)

* masking function depends on round
* used in Entrust, OpenSSL

CAST-128

« Feistel, 64-bit block, 128-bit key
* 16 rounds

strong subkey generation using S boxes
key-dependent rotates

CNS Lecture 5- 48

* Swiss cipher ("91) in original PGP, patent problems
* 64-bit block, 128-bit key, 16-bit words ron Feistel
* Three operations: addition 2'6, XOR, multiplication mod 2'6 + 1

* Decryption needs multiplicative inverse and subtraction, and
modi

* & rounds + 1 output transformation

* 52 16-bit subkeys (key schedule: 25 bit rotate)
* Large classes of weak keys ®

—Could be fixed with better key schedule

IDEA

fied subkeys

IDEA single round

X; 16 bit Z; 16 bit subkey

CNS Lecture 5- 49 ‘

RC5

« Rivest’s Cipher (RSA) RC2, RC4, (RCG/AES)

* parameterized block cipher, not Feistel

« select key size, rounds, block size

« RC5-32/16/10 (16 rounds, &0bit key), 32-bit word worry about byte-order
« uses XOR, rotate, add/subtract mod wordsize

* no substitutions

* security: data-dependent rotates

* key expansion uses addition/rotates, sceded with constante ¢ and ¢

* decryption: reverse rounds, rotation, and use subtraction

* twice as fast as DES

« licensed, inlote of RSA products

CNS Lecture 5 - 51 (- 4

RC2

Ron’s Code

« non-Feistel (Rivest, '97)
* ueed in S/MIME

* optimized for 16-bit arithmetic, addition/subtraction, XOR, AND,
complement, rotate

* 84-bit block

* 1& rounds (mixing/mashing)

« 8101024 bitkey

* subkey generation uses XOR and digite of pi

* subkey selection is data dependent in each round

* decryption: rounds and subkeys in reverse order, subtract for add
* 40-bit key for export

CNS Lecture 5- 50

RC5

+
S[2—o +
Cipherien 2w Coperirat v by
Encrrpten 4 Dty

Figure &4 RCE Encrypeion sad Decrypicn

«Uses addition, XOR, left circular shift
*RC5 round == two DES rounds
CNS Lecture 5 - 52

Guessing an RC5-wir/b key

* Brute force key guessing (RSA/ECC challenge)
» www.distributed.net/rc5 (like SETI@home)
*RC5-32/12/7 (56 bit key)
—Found 10/19/97, 250 days
*RC5-32/12/18 (64-bit key)
—Found &/12/02,1757 days
—247 x10° keys/sec (max rate) 00.12% keyspace! day
—331,252 participants tested 15,769,938,166,961,326,592 keys
*RC5-32/12/9 (72 bit key) ... workinprogress

NOTE: this only finds one key, doesn’t really “break” the cipher

CNS Lecture 5 - 53 w

RC6

* AES candidate
* Key schedule same as RCS e
« Changes from RC5
—2 streams of RCH, AB and CD
—Mix AB CD streams in swap e
—5-bit rotation (log, 32)
—Quadratic function (B (2B +1))
—Pre and post whitening steps

CNS Lecture 5- 54

Block cipher design

substitution and traneposition

« confusion and diffusion
* easy if you have metmory for 48x32 S-boxes
« easy if you iterate for 126 rounds
« easy if you use a 512-bit key
« trick Is design one with
—smallest possible key
—smallest memory requirement
—low power consumption
—fastest running time

Felstel clphers: Lucifer, DES, Blowfish, CAST

not: IDEA, RCB, RC2, AES/Rijndzel

CNS Lecture 5- 55

Blocking for block ciphers

Handling messages bigger than 64 bits....

(T T T T T T 2222]
Bl B2 B3 B4

* do 64-bits (block) at a time

* applies to all block ciphers (FIPS &1)

* rule for padding last block and/or encoding length? PKCS5

* Electronic Code Book (ECB)

» Cipher Block Chaining (CBC)

* Cipher Feedback (CFB)

* Output Feedback (OFB)

* Counter (CTR)

Chaining/feedback methods require an initialization vector (IV) to start

~change 1V for each message so same message encrypts differently
-keep IV secret?

CNS Lecture 5- 57

Block cipher design -- summary

Table 6.1 Speed Comparisons of Block Ciphers on a Peatinm

substitution and permutation

Mgeuhm Chckoytie per | folroumds #al lork ey
- ki

« performance (time/space) ve strength :‘---1 2 e -

* large keys ors " 5

« strong subkey generation ml: = ; “ =

* large blocks

* gimple operations, complex, non-linear functions (S-box, rotate)
* iterative, more rounds

* resist known attacks (diff./lin.)

* clphertext should have uniform distribution (look random)

analyze, analyze, analyze

CNS Lecture 5- 56 w

padding

* Needed for ECB and CBC modes

* Last block must be filled out to block size (DES & bytes, AES 16)

*Recall: hashes did last block padding too (10000.. length)

* Output of encryption will be multiple of block size

* Could provide “actual” length out of band or encode in pad
—If encode in pad, then will need extra block if exact multiple
—Sender and receiver must agree onlength/padding encoding

* Lots of ways to pad
—Padwith O’s, last byte = # of padding bytes
—Pad with O,s or spaces or random (need out of band length)
—Padwithbytes all = # of padding bytes (PKCSH)

* DES encrypt “hello” Ox68656c6c6f030303

* OpenSSL APl will pad with null (O’s)

CNS Lecture 5 - 58 By

ECB -- electronic code book

original

* just encrypt each block
* worry about padding last block
* blocks can be done in parallel ©
* simple, stupid ®
—identical plain will encrypt to identical cipher

—replace ciphertext blocks with other blocks
—reorder blocks /
—lot of structure remains

* Loss of a cipher block? Change a cipher bit?

ECB

PLEASE use only for one-block messages!

CNS Lecture 5 - 59

CBC

1B ey pien

Figure %12 Cipler Block Chaiming (CHC) Mode

CNS Lecture 5 - 60 w

10

ICBC chaining in software
CBC - cyclic block chaining previous = IV
hile(moreplaintext){
plain = next_block()
encrypt(result,key,xor(previous,plain))
« need an IV (nitialization vector) first iteration output result

« Iterative, E(p®c.) = ¢ previous = result
* decryption:Di(c) @ ¢ = p,

* worry about padding lagt block

« use for long messages, flles

« commurnicate IV (in the clear?)

« differinglV assures same plaintext produces different ciphertext

* garbled cipherbits affect two plaintext blocks

* clpher blocks lost or added, rest of decryption trashed

* doesn’t assure integrity
—can change abit of ciphertext and have it alter bit of plaintext on decryption!
—rearrange ciphertext blocks

CBC-MAC

aleo can use final ouigut of CBC encryptlon as MAC/hash (slow) or better, CMAC, but
need export license

CNS Lecture 5- 61 ‘

CFB - cipher feedback

*need anlvV
* cipherbyte fed into next step ¢ =Efc.)® p
* can do abyte (&-bits) at a time

« if cipherbytes are lost, CFB will re-synch, but every byte of input
requires an encryption operation

* Flip a cipher bit results in bit flip of plaintext bit (and half next
block)

» useful for short message encryption (e.g., telnet)
* used by stel, ssh v, deslogin (e.g. interactive streams)

Keep IV secret?
-there are some attacks based on knowledge of IV

-best practice is to derive IV from message key and session nonces
CNS Lecture 5 - 63 ur

CFB

Figmre 313 sbit Clpher Foedhack (CFIL Mode

CNS Lecture 5- 62 w

OFB

o) Enerypiies

= “- ']‘

OFB - output feedback

* needanlv

« best used ih 64-bit mode

* can pre-generate stream (o) (a PRNG)

* XOR plaintext with OFB stream ¢=Ef0)® p
« like ore-tithe pad (stream cipher)

* garbled cipherbite only affect corresponding plain

* attacker can fllg bits in ciphertext and corresponding bits in recovered
plaintext will be flipped

« loss/add of cipher block, trashes decryption

« If attacker knows a c[pherblook and plalnb]ock, he can substitute his own
plainblock m (a problem with all stream ciphers)

p®r=c ifknowp andc, then replacecwith ¢’=c®p®m
when c'is decrypted (Or), youget m

CNS Lecture 5 - 65 w

Figure 14 s-hit Output Feodback (0FR) Made

CNS Lecture 5 - 64 w
Counter mode (CTR)
* Chalring (CBC) makes paralel speedups hard and hard to decrypt Just Nhblock (e.g. for

disk)

+ ECB canbe done i paralel (weak)

+ OFB pre-gererate key strea, paralel
but stiliave to generateN-1sequences to
decode N* block

counter mode
E,(counter++) ®p,=¢

« counter should be BIG Integer " =

« counter initialized to some value (IV) . —.{_—1-_| . —.{_-1-_| . —.{_-1-_|

« Canbe done in parallell E _% i _% . _%

* Can pre-generate sequence (stream cipher) ' ’

* permite direct decoding of block N - I -

(digk encryption)

* Errors
— Garbled cipher block affect only one block
— flip a cipher bit causes plaintext bit to flip
— Add or lose a cipher block 77

* As secure as CFB, OFB, CBC
* &lso use a6 PRNG

CNS Lecture 5 - 66 w

11

Block-mode cipher summary

* ECB for single blocks (careful)
* CBC for multiple block (ECB and CBC need padding)
* stream/character based: OFB/CFB/CTR
* understand error properties
—blocks re-ordered
—error or modified cipher block (cipher bit flipped)
—missing or duplicated/added block
* special requirements: parallel, disk encryption

encryption does not guarantee message integrity!

CNS Lecture 5 - 67 w

OpenSSL file encryption commands

* Takes care of password to key conversion, padding and salt
—Output file larger and “gibberish” (binary data)

* Prepends & byte random salt — same file encrypted with same password will be
“different”

openssl des-cbc —in letter.txt —out letter.des —k secret

openssl des-cbc —d —in letter.des —out tmp —k secret

* DES variante: des des-cbc des-cfb des-ech des-ede des-ede-cbc des-ede-
cfb des-ede-ofb des-eded des-ede3-cbc des-eded-cfb des-ede3-ofb
des-ofb desd desx

* Others: blowfish, AES, rc2, rc4, cast
* Key optlons: command line, file, or prompt -pass pass:secret
* Benchmark with spesd command (or visit Crypto++ website)

CNS Lecture 5- 68 w

OpenSSL encryption APl DES

* Encrypted data is “glbberish”, don't use str™()
* Encrypt output will be rounded up (O-padded) to muitiple of & bytes
* May need to do IV chaining

#include <openssl/des.h>

DES_cblock key, iv;

DES_key_schedule sched;

int r;

char out[4096],in[4096], *str="123456789abcdefghij";

DES_random_key(&key) ;

r = DES_set_key_checked(&key,&sched);

printfC'r %d\n",r);

strncpy(in,str,strien(str)+1);

// DES_ncbc_ ... actually updates the iv, _cbc_ does not
DES_cbc_encrypt(in,out, sizeof(out),&sched,&iv,DES_ENCRYPT);
DES_cbc_encrypt(out, in, sizeof(out),&sched,&iv,DES_DECRYPT);
printf("%s\n",in);

CNS Lecture 5- 69 w

OpenSSL encryption - crypto agile (EVP)

#include <openssl/evp.h>
EVP_CIPHER_CTX ctx;

char key[EVP_MAX_KEY_LENGTH];
char iv[EVP_MAX_IV_LENGTH];

set up key and iv

EVP_Encryptlnit (&ctx, EVP_des_cbc (), key, iv);
EVP_EncryptUpdate (ctx, out, &outlth, in, inlth);
EVP_EncryptFinal (ctx, out, &outlth);

EVP_Decryptlnit (&ctx, EVP_des_cbc (), key, iv);
EVP_DecryptUpdate (ctx, out, &outlth, in, inlth);
EVP_DecryptFinal (&ctx, out, &outlth);

For more codin? examples see ~dunigan/cns06, see
OpenSSL tar file, see OpenSSL book website

CNS Lecture 5- 70 w

Next time ...

Lectures

Risk, viruses

UNIX vulnerabilities
The next generation : AES Authentication & hashing

Stream cwphers Random #s classical crypto

Key management AES, stream ciphers RC4, LFSR
MIDTERM @&

Public key crypto RSA, D-H

. ECC, PKCS, ssh/pgp

[10. PKI, SSL

[11. Network vulnerabilities

I
.
B.
la.
5. Block ciphers DES, RC5
6.
7.
..
0.

12. Network defenses, IDS, firewalls
[13. IPsec, VPN, Kerberos, secure OS
14. Secure coding, crypto APIs

15. review

CNS Lecture 5- 71 w

12

