
Visual Spoofing of SSL Protected Web Sites and

Effective Countermeasures�

Andre Adelsbach, Sebastian Gajek, and Jörg Schwenk

Horst Görtz Institute for IT Security, Ruhr Universität Bochum, Germany
{andre.adelsbach, sebastian.gajek, joerg.schwenk}@nds.rub.de

Abstract. Today the standard means for secure transactions in the
World Wide Web (WWW) are the SSL/TLS protocols, which provide se-
cure (i.e., private and authentic) channels between browsers and servers.
As protocols SSL/TLS are considered secure. However, SSL/TLS’s pro-
tection ends at the “transport/session layer” and it is up to the applica-
tion (here web browsers) to preserve the security offered by SSL/TLS.

In this paper we provide evidence that most web browsers have severe
weaknesses in the browser-to-user communication (graphical user inter-
face), which attackers can exploit to fool users about the presence of a
secure SSL/TLS connection and make them disclose secrets to attack-
ers. These attacks, known as “Visual Spoofing”, imitate certain parts
of the browser’s user interface, pretending that users communicate se-
curely with the desired service, while actually communicating with the
attacker. Therefore, most SSL/TLS protected web applications can not
be considered secure, due to deficiencies in browser’s user interfaces.

Furthermore, we characterise Visual Spoofing attacks and discuss why
they still affect today’s WWW browsers. Finally, we introduce practi-
cal remedies, which effectively prevent these attacks and which can eas-
ily be included in current browsers or (personal) firewalls to preserve
SSL/TLS’s security in web applications.

1 Introduction

The recent growth of the World Wide Web (WWW) and its broad acceptance
even for security critical applications, such as banking and auctions, requires
that web browsers provide means to establish secure, i.e., authentic and private,
communication channels to servers. Today the Secure Socket Layer (SSL) [1]
protocol and its successor, the Transport Layer Security (TLS) protocol [2], are
the de-facto standard for secure communication on the Internet. SSL/TLS are
publicly specified and have undergone a wide peer-review, which is the reason for
them, as protocols, being believed to be secure [3]. Besides a secure connection,
there must be a trustworthy and reliable way to inform users about the security

� Proceedings of the 1st Information Security Practice and Experience Conference
(ISPEC2005), Singapore, 11-14 April, 2005, to appear in LNCS, Springer-Verlag
c©Springer-Verlag, Heidelberg, 2005

properties of a connection such that users are able to distinguish a secure con-
nection from an insecure one. In general, a connection’s properties are indicated
by several features of a browser’s user interface, e.g., the padlock icon in the
status bar or the certificate dialog. In the following we will refer to the specific
features of a web browser’s user interface, which visualise information about the
security status of a connection, as the browser’s secure connection indicators
(BSCIs).

Attacks, which tamper with these indicators to fool the user about the con-
nection’s real status, are called Visual Spoofing (VS) attacks. These attacks
exploit the flexibility of browser’s user interfaces to replace real BSCIs with fake
ones1 and imitate the look and feel of a trusted web site. By simulating a secure
connection to a trusted service, the victim can be tricked to disclose any secret
information2, destined for the trusted web site, to the attacker. Consequently,
VS attacks are a great threat for any secure web service, such as single-sign-on
services, online banking or online shops.

VS attacks on their own, hosted on the attacker’s web server, are harmless
in general, because a victim would hardly direct his browser to that VS page by
chance. Therefore, an attacker has to direct the unwitting user (or his browser)
to the site hosting his VS attack. We refer to this auxiliary step as the mounting
attack. Mounting attacks can be categorised into those operating on the network
layer and those operating on the application layer. Prominent examples of the
first category are ARP, IP or DNS spoofing attacks [4], whereas e-mail spoofing
and URL spoofing are examples of the latter category. Due to the large number
and diversity of mounting attacks, an attacker has many effective options for
initiating VS attacks.

VS attacks have been studied for several years [5–8] in the research commu-
nity, but with only little impact on today’s browsers. Recent studies [9, 10] show
a strongly increasing number of VS attacks in the Internet, because, in con-
trast to buffer-overflow attacks, VS attacks do not require sophisticated expert
knowledge of operating systems and low-level programming; VS is applicable
by moderately experienced attackers. Therefore, there is still the necessity of
discussing these attacks and, even more important, to develop practical, i.e.,
effective and easy to use, countermeasures.

Our paper is structured as follows: In Section 2 we briefly review the basic
idea of VS attacks, discuss existing BSCIs and point out vulnerabilities of de-
ployed web browsers that allow an attacker to trick even experienced, security
aware users about the status of a SSL/TLS connection. In Section 3 we review
several ways how to exploit these vulnerabilities such that all BSCIs indicating

1 More concretely, browser’s BSCIs are deactivated and fake BSCIs are rendered in
the display area of the browser, such that an user can hardly (if at all) distinguish
fake from real BSCIs.

2 Examples are payment information, such as credit card numbers and authorisation
information (login, PIN and TAN) of online banking systems, or complete web iden-
tities administered by single-sign-on services (e.g., Microsoft’s Passport) or attribute
wallets.

a trustworthy secure connection can be perfectly faked in design as well as in
functionality. Then, in Section 4 we discuss mounting attacks that can be used
to route users to sites hosting the actual VS attack. We review related work,
especially proposed countermeasures, in Section 5 and assess their suitability
and effectiveness to counter VS attacks. In Section 6 we propose effective coun-
termeasures against VS attacks, which can be easily integrated into common
deployed browsers and which allow even average, naive users to detect VS at-
tacks without restricting user’s convenience. In Section 7 we discuss two possible
ways of implementing these countermeasures. A demonstrator is available online
[11]. Finally, in Section 8 we summarise our results and conclude.

2 Visual Spoofing (VS)

The SSL/TLS protocol has undergone intense peer review without finding severe
vulnerabilities in the latest versions. However, to achieve overall security in real
world applications, it is important to carefully integrate SSL/TLS, which, among
other things, comprises the way security relevant information is displayed to the
user.

VS attacks exploit vulnerabilities in the presentation of security relevant
information. It is important to note that VS attacks are not limited to web
browsers, but can, in principle, be applied to almost any application, which of-
fers remote access to the user interface. However, as web browsers are widely
deployed, used for various types of security critical applications and specifi-
cally designed to offer remote web designers extensive control over the rendering
process (unfortunately, including the browser’s user interface), they are perfect
targets for VS attacks.

VS attacks on web browsers exploit the rich features offered to web designers
to fake those parts of a browser’s user interface, which display information about
the connection’s security status. As a result, users believe to communicate over
a secure channel with the desired web server (as indicated by the browser’s user
interface), while actually communicating with a rogue service or over an insecure
channel.

2.1 Browser Secure Connection Indicator (BSCI)

All current web browsers provide means to inform users about the status of a
SSL connection, which we will refer to as Browser’s Secure Connection Indicators
(BSCIs). BSCIs allow users to distinguish a secure connection from an insecure
one by displaying information, such as the server’s certified identity and the
cryptographic property of the connection. As BSCIs are the browser’s only means
for users to get information about the security status of a connection or retrieved
document, their authenticity is crucial to the overall security. Common BSCIs
(here exemplarily described for Internet Explorer) are:

– The most eye-catching indicator for a SSL-protected connection is a padlock
icon, which is displayed in the status bar if the current web page has been
retrieved over an SSL connection. A double click on this icon opens the so
called certificate dialog (see below).

– The certificate dialog displays detailed information about SSL’s current
status, such as the server authentication information (including server name
and certification authority) and the concrete cryptographic algorithms and
key-lengths being used to protect the transmission of the rendered web page.
For the user it is the prime means to evaluate the web site‘s authenticity.

– The location bar can be used to manually direct the browser to a certain
web page, specified by a so called Uniform Resource Locator (URL). A URLs
consists of the protocol’s name followed by the address of the service. The
prefix ”https” in an URL indicates the use of SSL and is a further hint for
a secure connection. After a web page has been retrieved and rendered the
location bar displays the corresponding URL. Choosing an accurate address
(mainly the domain name) for a web site can strengthen the trust in a
document’s source.

– The menu bar is an “indirect” indicator, as it contains no immediately
visible information about the connection’s status; it rather provides fea-
tures, which may disclose a VS attack, and provides access to further BSCIs:
Firstly, the menu bar (“View” menu) indicates the visibility of the browser’s
status and address bar. It is the only indicator for the real presence (and
authenticity) of these BSCIs. Secondly, it provides access to the “document
source” dialog, from which an experienced user can detect a VS attack,
as well as access to the “document property” dialog, which contains details
about cryptographic algorithms used to protect the retrieved document (e.g.,
cipher suite, key length).

2.2 Technical Preconditions for VS Attacks
For being susceptible to VS attacks browsers need to fulfil following precondi-
tions: First, the browser’s user interface has to be controllable by active web
languages, e.g., Visual Basic Script or JavaScript, such that a retrieved web
page can deactivate any BSCI when being rendered without the browser ask-
ing the user for permission or warning him. Second, the browser must have a
standardised user interface. This allows an attacker to fake the SSL indicators
without special knowledge about the user’s user interface, as he can easily guess
the browser’s look and feel as expected by the user and fake it accordingly.3

Most currently available browsers, such as Microsoft’s Internet Explorer 6,
Netscape Navigator, and Firefox, fulfil these preconditions and are, as a matter
of fact, susceptible to VS attacks. To our knowledge the Opera web browser does
not fulfil these preconditions, as it does not allow an attacker to control the user
interface by means of active web languages.

3 Proof of Concept Implementations of VS Attacks

The common principle of existing VS attacks is to deactivate the browser’s BSCIs
and display fake ones in the browser’s rendering area by using design features of
standard web languages.
3 The latter condition holds for almost any standard application. Thus, it also holds

for web browsers immediately.

An early proposed way to fake all BSCIs is to include images of BSCIs in
a web page (see Felten et al. [5]). However, pure image-based VS attacks lack
dynamic behaviour of the faked parts (e.g., certificate dialog or menu bar). Such
static implementations are easily detectable by users and are only a minor threat
in practice.

In [7] Li and Yongdong describe a VS attack containing a faked certificate
dialog. A click-event on the padlock icon opens a fake certificate dialog, which
displays wrong authentication information, while preserving the usual behaviour
(response to mouse events). However, as this attack is based on Java Applets
this leads to noticeable delays in rendering the fake certificate dialog.

Our Proof of Concept Implementation Our proof of concept VS attack uses
DHTML, i.e., it renders static BSCIs components with standard HTML and im-
plements dynamic behaviour with JavaScript and Cascading Style Sheets (CSS).
All these techniques are standard means in web development, available in almost
any browser. We mainly focused on Microsoft’s Internet Explorer 6, as it is the
most widely used browser today. The VS attack opens a new browser window
with deactivated BSCIs (menu, button and status bar). The fake status bar
(with lock icon) is included as an image. A double click event on the lock icon of
the fake status bar opens a fake certificate dialog (browser window), which con-
tains faked certificate information. The location bar is faked by using a HTML
form, because this allows us to intercept user inputs and react accordingly to
simulate the standard user interface behaviour, as expected by the victim; it can
be used to analyse users’ surf behaviour and to redirect the victim to further
spoofed web sites. The buttons in the button bar change (onFocus-event) when
the user moves the mouse pointer over a button as in the standard IE user in-
terface. Furthermore, the button’s functionality (e.g., back, refresh, stop) can be
simulated by binding suitable JavaScript functions to the onClick-event of the
corresponding button image.

A new finding of our proof of concept VS implementation is that even the
whole menu structure of the menu bar can be spoofed by means of the layer
feature of dynamic CSS. This comprises the ”View” menu, which allows us to
trick users about the actually activated bars. It is even possible to fake other
BSCIs (see Section 2.1) like the source code or cryptographic properties of the
rendered page by applying the same techniques. As a figure would hardly show
any differences between the faked user interface and the original user interface,
we provide a demonstrator of the VS attack for Internet Explorer 6 online [12].
With this demonstrator, we prove that IE’s user interface including all BSCIs,
can be nearly perfectly faked. There remain two “imperfections” in our proof of
concept VS attack:

– The title bar of the fake certificate dialog contains ”Microsoft Internet Ex-
plorer”, because it is rendered in an Internet Explorer window instead of a
local operating system (Windows) dialog.

– The certificate dialog does not open if a pop-up blocker is active.

To remove these remaining “problems” an attacker may use an alternative im-
plementation of the fake certificate dialog based Macromedia’s Flash. A demon-
strator is also online [12]. Furthermore, we want to stress that it is also possible
to implement the whole VS attack in Flash. However, tests in our department
showed that nobody, although having a strong background in IT-Security, was
able to distinguish the original browser’s user interface from the one of our VS
demonstrator based on these imperfections. Therefore, we believe, that most
users will not be able to detect such an advanced VS attack as well. In the
following section we will address complementary mounting attacks.

4 Mounting Attacks
To mount a VS attack in practice, the attacker has to direct his victim to a web
server hosting the actual VS attack. In this section, we review three well-known
preparative mounting attacks and discuss their efficiency to illustrate the ease
of mounting visual spoofing in practice.

E-Mail Spoofing The attacker sends an e-mail to the user, which seems to origin
from a trusted company that commonly contacts their clients with standardised
mails, e.g., PayPal or eBay. The mail urges the user to follow a hyperlink referring
to a malicious server that hosts the actual attack. Examples can be found in [9].
This mounting attack combined with a VS attack is known as Phishing. E-Mail
spoofing is the most popular way of mounting VS, because it does not require
sophisticated technical knowledge. Spoofed e-mails are commonly sent randomly
to a large number of recipients in the hope, that at least some of the recipients
are customers of the specific company forged by the attacker.

URL Attacks Here, the adversary hosts the implementation of the VS attack
in a web domain, which has a name similar to (and easy to confuse with) the
domain name of the spoofed web site. Now the attacker regularly publishes the
fake domain in search engines, or includes links to this domain on other web
sites (e.g. advertisements). Examples for URL attacks are:

1. “http://www.signin.ebai.com”, which is can be easily confused with the real
URL “http://www.signin.ebay.com”.

2. URLs such as “http://www.paypal.com@the.attacker.com” exploit a rarely
used feature, which allows to include a login name in an URL by prepending a
string ”login@” to the address part of an URL. Therefore, this URL refers to
domain “the.attacker.com” instead of www.paypal.com, which is interpreted
as a login name instead of an address.

Include or Refer to VS Attacks in Third Party Sites Another way to mount
VS attacks is to include VS attacks in third party sites, which are used and
trusted by many users (cross-site-scripting). A recent example includes VS code
in an Ebay online auction to open a fake login page, which may send login and
password to an attacker [13]. This attack may even be combined with elements
to fake BSCIs. An attacker may also advertise wrong URLs in the name of some
trusted company (e.g., a bank) which actually refers to a VS attack instead of
the company’s real web site.

Network based Attacks and Man-In-The-Middle Attacks In this type of mounting
attack the attacker intercepts the communication between client and server. To
this end the attacker may apply techniques such as ARP or DNS spoofing to
push himself between the communication of client and server. This mounting
attack is very powerful, because is allows the attacker to target selected users
and it does not depend on users’ interaction (e.g., by following some advertised
link). On the other hand, such network based mounting attacks require more
technical skills than sending fake phishing emails.

We want to stress that VS attacks enable successful man-in-the-middle at-
tacks against SSL, because a man-in-the-middle attacker may visually spoof the
authentication information (including the certificate dialog) of the server, such
that the user does not notice the man-in-the-middle. Furthermore, this is the rea-
son, why server-based countermeasures against VS attacks cannot be effective.

5 Existing Countermeasures

First of all, we want to note that visual spoofing can be countered indirectly,
by countering mounting attacks. However, in this paper our focus is on direct
countermeasures against VS, such that we do not go into the details of preventing
the mounting attacks outlined above.

Felten et al. [5] proposed to deactivate all active web languages which fa-
cilitate spoofing (e.g. JavaScript, ActiveX or Java). From today’s point of view
this proposal seems to be impractical, because active web languages strongly
improve the service offered by web sites – in fact, most popular web sites would
not work anymore if a user would disable active web languages in his browser. As
the WWW gained popularity through these languages, their restriction would
severely decrease the web’s usability, comfort and acceptance.

In [14] the authors introduced an idea for a new web browser as a consequence
of lacking long-term solutions. The authors proposed to include unspoofable fea-
tures in web browsers that reveal the presence of VS attacks. More concretely,
they proposed to apply synchronised random dynamic boundaries (SRDs). The
idea of SRD is to distinguish authentic parts of the browser GUI from rendered
content received from a server by changing the boundary colours of the real GUI
pseudo-randomly and unpredictable for remote attacker. Users have to com-
pare the changing colours of browser windows with those of a reference window.
Boundaries of an original browser window will be synchronised with the reference
window, while spoofed browser windows won’t be correctly synchronised. This
proposal has practical drawbacks: Firstly, blinking features may disturb users.
Secondly, the proposed implementation seems to be weak, because it is based
on the XML User Interface Language (XUL). XUL allows also remote users to
change the look and feel of a browser by applying means of CSS and JavaScript,
which may allow an attacker to spoof this feature as well. In [15] the author
describes how this vulnerability can be exploited. Therefore, we conclude that
this proposal is not suitable to protect users against VS.

Li and Wu [7] proposed to prevent that the status bar is being deactivated by
active web languages.4 We consider this to be a good first step, but it is still not
sufficient to completely counter VS attacks: an attacker can simply apply for a
SSL certificate and host the spoofing attack on a SSL-enabled web server. A naive
user will recognise the padlock icon, stemming from the attacker’s certificate, and
the spoofed URL displayed in the faked address bar. Therefore, he will believe
to communicate securely to the requested service. Another proposal of Li and
Wu is to improve the SRD concept by defining the reference point within the
window (e.g. menu bar). This is also not an effective countermeasure, as such
references can be spoofed even more easily.

In [8] the authors introduce the concept of trusted credential area (TCA).
TCAs are solid, unspoofable areas in browsers’ user interface, which visualise
the authenticity of a web site by means of extended graphical credentials (e.g.
brand logos, icons, seals). Thereby, certification occurs either by a trusted third
party called Logo Certification Authority (LCA) or by self-certification. To re-
duce the involved overhead, the authors propose an extension of the TLS pro-
tocol. Our conclusion is that the idea of visualising trusted credentials is very
good, especially for naive users. A brand logo is easier to understand than a
list of cryptographic parameters. However, we see disadvantages in the LCA-
proposal: Firstly, it either involves significant overhead or a new variant of the
TLS protocol. Secondly, it is costly for a certification authority to verify that cer-
tified logos are sufficiently distinct, such that they cannot be confused by users.
This problem already exists today in the context of brand imitations. This is
why we highly appreciate the idea of self-certified logos. In independent work,
we developed a countermeasure similar to the approach of Herzberg and Gbara:
Whereas Herzberg and Gbara propose to use self-certified logos to authenticate
web sites, we propose to authenticate the browser’s user interface, which signifi-
cantly reduces the “certification”-load put on users. In contrast to the approach
of Herzberg and Gbara, the user needs only one personal logo to authenticate
the user interface of his browser (see Section 6.1). In the following section we
will discuss possible effective countermeasures in more detail.

6 Effective Countermeasures
The key-observation is that VS attacks aim at the browser’s user interface and
its perception by (naive) users. To counter VS effectively, two complementary
types of measures are required:

1. Improve User’s Security Awareness: The first and probably most im-
portant measure is to train users and improve their security awareness. Ad-
equate security awareness of users is the ultimate prerequisite against any
kind of VS attack. As long as a user does not care about security any tech-
nical countermeasure will be ineffective.

2. Supporting Technical Measures: As mentioned before, advanced VS at-
tacks against standard browsers are hard to detect even for security special-
ists. Therefore, it is necessary to offer users reliable technical means to detect

4 This has recently been implemented in Windows XP‘s Service Pack 2.

VS. Obviously, server-based countermeasures cannot completely prevent VS
attacks, because an attacker can still circumvent such countermeasures by
faking the user interface accordingly. On the one hand, personalisation of web
sites (e.g., with logos selected by users) may improve the complexity of VS
attacks, because each VS attack has to be adapted to the respective user and
may only be possible for man-in-the-middle attackers. On the other hand,
however, VS attacks by man-in-the-middle attackers cannot be completely
prevented by server-based remedies. Instead, effective countermeasures have
to eliminate weaknesses in the user interface. The fundamental weakness
enabling VS attacks is the lack of BSCI authentication.

Due to the technical focus of this paper, we concentrate on the technical
means to counter VS attacks. Our emphasis is on countermeasures that do not
restrict users (e.g., by deactivating widely used features such as JavaScript),
because this would strongly limit their acceptance by users. However, we want
to stress that the effectiveness of these measures ultimately relies on the security
awareness of users. In the following Sections we introduce several complementary
concepts to counter VS attacks.

6.1 Personalisation

As discussed above, VS exploits vulnerabilities in browsers’ SSL integration (dis-
playing SSL meta-information) to simulate a secure connection to a trusted
server by displaying fake meta-information. A straightforward method to pre-
vent VS attacks is to implement BSCIs as tamper-resistant components of the
user interface, which cannot be deactivated or changed by (active) web languages
(at least for SSL connections).

We propose to authenticate BSCIs by applying the concept of personalisation
with individually chosen background bitmaps (see Figure 1), as introduced by
[16] in the context of trojan horses. We believe that the use of personalised
bitmaps, e.g. the picture of the user’s pet or friend, is more eye-catching than
the proposal of blinking boundaries, while at the same time being less annoying.
Compared to the proposal of self-certified logos (see Section 5), the configuration
overhead for the user is significantly reduced, because the user only has to select
one background image instead of self-certifying a logo for every SSL-enabled web
site for which a user wants to counter VS attacks.

This has two advantages: first, the user has a stronger relation to his browser
what makes changes more eye-catching. Furthermore, it is improbable that a
remote attacker is able to determine (and fake) this individual modification. Due
to security policies of web languages, the remote attacker is unable to neither
figure out the position, nor the concrete background image chosen by the user.
Therefore, an attacker can only act on the assumption that his victims use
the standard user interface and a personalised user interface would immediately
expose this VS attack. Figure 1 shows a screenshot of our demonstrator for
Internet Explorer 6.

personally chosen text

personally chosen picturepersonally chosen text

Fig. 1. Personalised User Interface. Marked regions are personalised BSCIs.

6.2 Independent Authenticated BSCIs

The idea of this concept is to introduce an additional helper application, which
collects various relevant information from reliable sources and displays them in
a trustworthy and authenticated way (see personalisation concept above). Our
prototype implementation collects connection information (e.g., IP address of the
server) from the operating system’s network stack5, and status information from
the browser. The latter includes meta-information such as the status of activated
bars (status bar, menu bar, etc.), URL and a brief summary of the SSL-related
information. Based on this summary of security relevant information a user can
verify whether the used web page is trustworthy or not. In case of a VS attack,
the information displayed by the browser and the information displayed in the
independent authenticated BSCI will differ and the VS attack will be noticed by
the user.

6.3 Semantic and Syntactic Analyser

The main idea of this concept is to analyse the source code of a web page
that is to be rendered in order to decide whether it contains VS code or not.
The outcome of this analysis can be either used to warn the user, or to block
suspicious content completely. However, we want to stress that the quality of
syntactic and semantic analysis depends on the acquired knowledge base and
that it might be hard to find suitable filtering rules in practice.

7 Implementation of Countermeasures

We propose two possible approaches of implementing our concepts. The first im-
plementation combines all concepts in an adaptive web browser toolbar, which

5 Note, that in case of network based mounting attacks, the information in the net-
work stack will contain wrong information. However, this will be noticed, as this
information will be different from the certificate information.

summarises all relevant information and allows the user to get this crucial infor-
mation at a glance. As this toolbar is a local component of the user’s system,
a remote attacker cannot access it by means of active web languages.6 The
advantage of this implementation is that a user has a permanent and reliable
overview about the status of his web connection. Once a user has personalised the
browser’s GUI (e.g. during installation), users achieve sufficient security against
VS attacks. Users only have to verify the web browser’s personalisation and the
certificate information, which is always displayed. This is why this approach is
suitable to protect even naive users. We have implemented a prototype of this
toolbar as a Browser Helper Object (BHO)7 for Microsoft’s Internet Explorer
Release 6. It can be downloaded at [11].8

A disadvantage of the toolbar described above is that its implementation
depends on the underlying browser, as it must be integrated in the web browser’s
user interface. To overcome this drawback, we propose a proxy-based approach:
a web proxy runs between the web browser and web site. Before the proxy
forwards a requested web page to the browser, it embeds meta-information into
the retrieved HTML-document. The web proxy may either operate on corporate
gateways, e.g., as part of a firewall, or it may operate as a local software on each
client, e.g., as part of a personal firewall. Its task is to summarise information
about the connection’s status, which is normally displayed by the BSCIs. This
information may be displayed in a fixed, unspoofable HTML frame similar to an
additional “status bar”.

To make this idea even more practicable and secure, we propose to visualise
the information as intuitive icons, e.g. a big lock icon, indicating a SSL con-
nection. As the embedded information is encoded as HTML and rendered by
the browser, care must be taken that the additional frame is resistant against
manipulation by means of active web languages. This can be achieved by fil-
tering selected instructions before forwarding the augmented web page to the
browser and personalising the frame to authenticate it. The main advantage
is that the HTML-encoded information can be displayed by any HTML web
browser, whereas the main drawback of this proposal is that it breaks the end-
to-end security of SSL/TLS-connections between the client and the server. How-
ever, as the proxy is operated by the user himself or by the company, we do not
consider this to be a problem in practice. Our future work aims at analysing this
approach in more detail and implementing this web proxy.

6 At least not with reasonable security settings and without asking the user for per-
mission. However, in these exceptional cases, no security is achievable anyway, as an
attacker may completely corrupt the user’s computing base.

7 A BHO is a COM-component, which is automatically mounted during the start of
the Internet Explorer application.

8 Alternatively, one could use Microsoft‘s Group Policy Editor (GPE), which also al-
lows to customise Internet Explorer‘s toolbars except the status bar. Thus, users are
also able to personalise the browser‘s GUI. However, as the GPE does not provide
means of personalising (authenticating) the status bar, we recommend the installa-
tion of Internet Explorer‘s Service Pack 2, which denies the status bar‘s deactivation
by remote users.

8 Conclusion
In this paper, we analysed the character of Visual Spoofing (VS) attacks. Visual
Spoofing exploits vulnerabilities in the web browser’s integration of SSL/TLS,
specifically the mechanism for indicating security relevant information, such as
the use of SSL and the certified identity of the server, to users. The main reason
why VS attacks succeed in today’s web browsers is their ability to deactivate
those parts of browser’s user interface that visualise crucial meta-information
and render faked ones instead.

We propose countermeasures, which authenticate those parts of the user in-
terface that display security critical information and include an unspoofable
summary of this information. Our countermeasure can be integrated directly in
a web browser by means of a Browser Helper Object or by means of a proxy,
which enriches retrieved HTML documents with security relevant information.
These countermeasures can easily be included in existing web browsers, corpo-
rate firewalls or personal security suites.

References

1. Freier, A.O., Kariton, P., Kocher, P.C.: The SSL Protocol: Version 3.0. Internet
draft, Netscape Communications (1996)

2. Dierks, T., Allen, C.: The TLS protocol version 1.0. Internet Request for Comment
RFC 2246, Internet Engineering Task Force (1999) Proposed Standard.

3. Schneier, B., Wagner, D.: Analysis of the SSL 3.0 protocol. In: Proceedings of the
2nd USENIX Workshop on Electronic Commerce, Oakland, USA, USENIX Press
(1996)

4. Ornaghi, A., Valleri, M.: Man in the middle attacks Demos. In: BlackHat Confer-
ence, USA (2003)

5. Felten, E.W., Balfanz, D., Dean, D., Wallach, D.S.: Web Spoofing: An Internet
Con Game. In: Proceedings of the 20th National Information Systems Security
Conference, Baltimore, USA (1997)

6. Zishuang Eileen Ye, Y.Y., Smith, S.: Web Spoofing Revisited: SSL and Beyond.
Technical report tr2002-417, Dartmouth PKI Lab (2002)

7. Li, T.Y., Yongdong, W.: Trust on Web Browser: Attack vs. Defense. In: Pro-
ceedings of the International Conference on Applied Cryptography and Network
Security, Kunming, China (2003)

8. Herzberg, A., Gbara, A.: Protecting (even) Naive Web Users, or: Preventing Spoof-
ing and Establishing Credentials of Web Sites. Internet draft, Bar Ilan University,
Computer Science Department (2004)

9. Anti Phishing Working Group: Phishing Attack Trend Report – July (2004)
http://www.antiphishing.org.

10. Litan, A.: Phishing Victims Likely Will Suffer Identity Theft Fraud. Gartner
Research Note (May 14, 2004)

11. Adelsbach, A., Gajek, S., Schwenk, J.: Visual spoofing toolbar (2004)
http://www.nds.rub.de/forschung/gebiete/UI/VS/download/visual spoofing tool-
bar.exe.

12. Adelsbach, A., Gajek, S., Schwenk, J.: Visual Spoofing Demonstrator based on
DHTML (2004) To avoid misuse, please contact one of the authors for the URL.

13. Heise News Ticker: eBay konnte Passwortklau nicht verhindern (December 23,
2004) http://www.heise.de/security/news/meldung/print/54605.

14. Ye, Z.E., Smith, S.: Trusted Paths for Browsers. In: Proceedings of the 11th
USENIX Security Symposium, San Francisco, USA (2002)

15. Mozilla.org: weak XUL security allows chrome UI spoofing (phishing attack) (2004)
https://bugzilla.mozilla.org/show bug.cgi?id=252198.

16. Tygar, J.D., Whitten, A.: WWW Electronic Commerce and Java Trojan Horses.
In: Proceedings of the 2nd USENIX Workshop on Electronic Commerce, Oakland,
USA, USENIX Press (1996)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.2
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

