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Abstract—The Cray X1 supercomputer is a distributed shared 

memory vector multiprocessor, scalable to 4096 processors and 
up to 65 terabytes of memory. The X1’s hierarchical design uses 
the basic building block of the multi-streaming processor (MSP), 
which is capable of 12.8 GF/s for 64-bit operations. The 
distributed shared memory (DSM) of the X1 presents a 64-bit 
global address space that is directly addressable from every MSP 
with an interconnect bandwidth per computation rate of one byte 
per floating point operation. Our results show that this high 
bandwidth and low latency for remote memory accesses 
translates into improved application performance on important 
applications, such as an Eulerian gyrokinetic-Maxwell solver. 
Furthermore, this architecture naturally supports programming 
models like the Cray shmem API, Unified Parallel C (UPC), and 
Co-Array FORTRAN (CAF), and it is imperative to select the 
appropriate models to exploit these features as our benchmarks 
demonstrate. 
 

I. INTRODUCTION 
The Cray X1 supercomputer, introduced in 2002, has a 

number of interesting architectural features. Two key items 
among these features are the X1’s distributed shared memory 
and its vector multiprocessors. Recent studies of the X1’s 
vector multiprocessors have shown significant performance 
improvements on several applications [1, 5]. In this paper, we 
characterize the performance of the X1’s distributed shared 
memory system (DSM) and its interconnection network with 
microbenchmarks and applications. 

The distributed shared memory architecture of the X1 
presents a 64-bit global address space, which is directly 
addressable from every processor using traditional load and 
store instructions. From the application perspective, this 
memory system behaves like a Non-Uniform Memory Access 

(NUMA) architecture; however, inter-node accesses are not 
cached. This hardware support for global addressability 
naturally supports programming models like the Cray shmem 
API [2], Unified Parallel C (UPC) [3], Co-Array FORTRAN 
(CAF) [8], and Global Arrays [7]. 
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II. CRAY X1 OVERVIEW 
The Cray X1 is an attempt to incorporate the best aspects of 

previous Cray vector systems and massively parallel 
processing (MPP) systems into one design. Like the Cray T90, 
the X1 has high memory bandwidth, which is key to realizing 
a high percentage of theoretical peak performance. Like the 
Cray T3E [10], the X1 has a high-bandwidth, low-latency, 
scalable interconnect, and scalable system software. And, like 
the Cray SV1, the X1 leverages commodity CMOS 
technology and incorporates non-traditional vector concepts, 
like vector caches and multi-streaming processors. 

A. Multi-streaming Processor (MSP) 
The X1 has a hierarchical design with the basic building 

block being the multi-streaming processor (MSP), which is 
capable of 12.8 GF/s for 64-bit operations (or 25.6 GF/s for 
32-bit operations). As illustrated in Figure 1, each MSP is 
comprised of four single-streaming processors (SSPs), each 
with two 32-stage 64-bit floating-point vector units and one 2-
way super-scalar unit. The SSP uses two clock frequencies, 
800 MHz for the vector units and 400 MHz for the scalar unit. 
Each SSP is capable of 3.2 GF/s for 64-bit operations. The 
four SSPs share a 2 MB “Ecache.” 
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Figure 1: Cray MSP module. 

Although the Ecache has sufficient single-stride bandwidth 
(accessing consecutive memory locations) to saturate the 
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vector units of the MSP, the Ecache is needed because the 
bandwidth to main memory is not enough to saturate the 
vector units without data reuse. That is, memory bandwidth is 
roughly half the saturation bandwidth. This design represents 
a compromise between non-vector-cache systems, like the 
NEC SX-6, and cache-dependent systems, like the IBM p690, 
with memory bandwidths an order of magnitude less than the 
saturation bandwidth. Because of its short cache lines and 
extra cache bandwidth, random-stride scatter/gather memory 
access on the X1 is just a factor of two slower than stride-one 
access, not the factor of eight or more seen with typical cache-
based systems like those based on the IBM Power4, HP 
Alpha, or Intel Itanium. The X1's cache-based design deviates 
from the full-bandwidth design model only slightly. Each X1 
MSP has the single-stride bandwidth of an SX-6 processor; it 
is the X1’s higher peak performance that creates an 
imbalance. A relatively small amount of data reuse, which 
most modern scientific applications do exhibit, can enable a 
very high percentage of peak performance to be realized, 
though worst-case data access can still provide double-digit 
efficiencies. 

The X1 compiler has two options for using the eight vector 
units of a single MSP. First, it can use all 8 when vectorizing a 
single loop. Second, it can split up (or multistream) the work 
in an unvectorized outer loop and assign it to the 4 SSPs, each 
with two vector units and one scalar unit. (The compiler is 
also able to vectorize a “long” outer loop and multistream a 
shorter inner loop if the dependency analysis allows this.) The 
effective vector length of the first option is 256 elements, the 
vector length of the NEC SX-6. The second option, which 
attacks parallelism at a different level, allows a shorter vector 
length of 64 elements for a vectorized loop. Cray also 
supports the option of treating each SSP as a separate 
processor. 
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Figure 2: Cray X1 node. 

As Figure 2 illustrates, four MSPs, 16 memory controller 
chips (M-chips), and 32 memory daughter cards form a Cray 
X1 node. The memory banks of a node provide 204 GB/s of 
bandwidth, enough to saturate the paths to the local MSPs and 
service requests from remote MSPs. Local memory latency is 
uniform for all processors within a node. Each bank of shared 
memory is connected to a number of banks on remote nodes, 

with an aggregate bandwidth of roughly 50 GByte/sec 
between nodes. ECC memory provides reliability by 
correcting single-bit errors, detecting multiple-bit errors, and 
providing chip-kill error detection.  

This represents one byte per floating point operation (flop) 
of interconnect bandwidth per computation rate, compared to 
0.25 bytes per flop on the Earth Simulator [11] and less than 
0.1 bytes per flop expected on an IBM p690 with the 
maximum number of Federation connections. The collected 
nodes of an X1 have a single system image. 

B. Interconnect Overview 
In large configurations, the X1 nodes are connected by a 

modified 2-D torus. This topology has relatively low bisection 
bandwidth compared to crossbar-style interconnects [4], such 
as those on the NEC SX-6 and IBM SP. Whereas bisection 
bandwidth scales as the number of nodes, O(n), for crossbar-
style interconnects, it scales as the 2/3 root of the number of 
nodes, O(n2/3), for a 3D torus. Despite this theoretical 
limitation, mesh-based systems, such as the Intel Paragon, the 
Cray T3E, and ASCI Red, have scaled well to thousands of 
processors. 

The Cray X1 nodes are connected using X1 routing 
modules. Each node has 32 1.6 GBs full duplex links. Each 
memory module has an even and odd 64-bit (data) link 
forming a plane with the corresponding memory modules on 
neighboring nodes. The local memory bandwidth is 200 GB/s, 
enough to service both local and remote memory requests. A 
4-node X1 can be connected directly via the memory modules 
links. With 8 or fewer cabinets (up to 128 nodes or 512 
MSPs), the interconnect topology is a 4-D hypercube. 
However, larger configurations use a modified 2D torus.  

 
Figure 3: Cray X1 cabinets. 

As Figure 3 shows, an X1 cabinet is comprised of 16 node 
boards and 4 routing boards. Each routing board has 8 routing 
modules. The routing module ASIC is an 8-way non-blocking 
crossbar switch supporting worm-hole routing. The routing 
module supports prioritization based on credits or aging. Ports 
are connected to the node boards or other router ports with 96-
pin cables with a maximum length of 4 meters. Data packets 
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carry a CRC, and if a CRC error is detected at the receiver, the 
packet is resent. MPI latency increase by about 500 ns per 
router hop. Software-loaded configuration tables are used for 
data flow mapping across the interconnection network. At 
system boot, these tables are initialized, but they can be 
reloaded to provide a means to reconfigure the network 
around hardware failures. 

Synchronization is provided by atomic in-memory 
operations that can be used to provide fast (sub-microsecond), 
scalable communications, such as locks and barriers. In 
particular, the X1 provides explicit memory ordering 
instructions for local ordering (LSYNC), MSP ordering 
(MSYNC), and global ordering (GSYNC). It also provides the 
basic atomic memory operations like fetch&op. Although 
these operations are efficient because they do not require a 
cache-line of data, they are not ordered with respect to other 
memory references and must be synchronized using the 
memory ordering instructions. 

C. Local and Remote Memory Accesses 
A single four-MSP X1 node behaves like a traditional SMP. 

Like the T3E, each processor has the additional capability of 
directly addressing memory on any other node. Different, 
however, is the fact that these remote memory accesses are 
issued directly from the processors as load and store 
instructions, going transparently over the X1 interconnect to 
the target processor, bypassing the local cache. This 
mechanism is more scalable than traditional shared memory, 
but it is not appropriate for shared-memory programming 
models, like OpenMP [9], outside of a given four-MSP node. 
This remote memory access mechanism is a natural match for 
distributed-memory programming models, particularly those 
using one-sided put/get operations. 

 
64-bit Virtual Address

Memory Region (useg, kseg, kphys): 2 bits
Must Be Zero: 14 bits

Page Offset: 16 bits
Possible Page Boundaries (64K-4GB): 16 bits

Virtual Page Number (VPN): 16 bits

 
 

Offset: 36 bits

Physical address space (Main mem, MMR, I/O): 2 bits

48-bit Physical Address

Node: 10 bits
 

Figure 4: Cray X1 address translation. 

As Figure 4 explains, the X1 64-bit global virtual address 
decomposes into two parts: two bits to select the memory 
region and 48 bits for a virtual page number, page boundaries, 
and page offset. The page size can range from 64KB to 4 GB, 
selectable at execution time with possibly different page sizes 
for text and data areas. 

The 48-bit physical address decomposes into a 2-bit 
physical address region marker, a 10-bit node number, and a 
36-bit offset. The 10-bit node number limits the maximum X1 
configuration to 1024 nodes (4096 MSPs). The address 
translation scheme uses 256-entry TLBs on each node and 

allows non-contiguous multi-node jobs. Page offsets are 
translated remotely, so the TLB only needs to hold 
translations for one node. This design scheme allows the 
system to scale with the number of nodes with no additional 
TLB misses. Memory latency can be hidden with the help of 
the compiler; the hardware dynamically unrolls loops, does 
scalar and vector renaming, and issues scalar and vector loads 
early. Vector load buffers permit 2048 outstanding loads for 
each MSP. Non-allocating references can bypass the cache for 
remote communication, to avoid cache pollution, and to 
provide efficient large-stride (or scatter/gather) support. 

III. PERFORMANCE 
This section describes some of our results in evaluating the 

Cray X1 and its memory hierarchy. These tests were 
conducted on the 8 cabinet, 512 MSP X1 located at Oak 
Ridge National Laboratory (ORNL). Our evaluation uses both 
standard and custom benchmarks as well as application 
kernels and full applications. 

A. Programming models 
An X1 node (4 MSPs) supports a cache-coherent shared 

memory, and Cray supports OpenMP, System V shared 
memory, and POSIX threads shared memory programming 
(SMP) models. In addition, the compilers can treat the node 
processors as 4 streaming MSP’s (MSP mode) or 16 
individual SSPs (SSP mode). Each node can have from 8 to 
32 Gbytes of local memory.  

Cray supports several distributed memory programming 
models for the X1, including MPI, SHMEM, Co-Array 
FORTRAN, and UPC. For MPI message-passing, the 
minimum addressable unit is an MSP (or an SSP if the job is 
compiled in SSP mode.) For UPC and Co-Array Fortran, the 
compiler can overlap computation with remote memory 
requests, due to the decoupled microarchitecture that allows 
the scalar unit to prepare operands and addresses for the 
vector unit.  

The programmer can mix node-level SMP with both MPI 
and direct access (shmem, UPC, or Co-Array Fortran) to 
remote memory. Synchronization (locks and barriers) are 
handled in hardware. Exploiting this diverse set of 
programming models is one of the opportunities of the X1. 

The compilers also provide directives to assist in 
parallelization and external memory management (e.g., no 
caching for designated variables). Scientific libraries provide 
efficient management of the Ecache and vector pipes. The 
user can specify page size for text and data areas when 
initiating an executable. The resource management system 
provides processor allocation, job migration, and batch 
scheduling. 

Table 1 provides the basic configurations of each 
platform used in this experimental evaluation. 

B. Microbenchmarks 
We use a collection of microbenchmarks to characterize the 

performance of the underlying hardware, compilers, and 
software libraries. The STREAMS [6] triad memory 
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bandwidth is 24 GBs for a streaming MSP or 40 GBs 
(aggregate) for 4 SSPs. This compares favorably with the 
Japanese Earth Simulator NEC SX-6 bandwidth of 30 GBs. 
Remote memory access bandwidth peaks at about 30 GBs for 
the X1 (using Co-Array Fortran).  

Table 1: Platform Configurations. 

 SGI Altix Alpha SC IBM SP3 IBM SP4 Cray X1 
Proc Itanium 2 Alpha EV67 POWER3-

II 
POWER4 Cray X1 

Interconnect Numalink Quadrics Colony Colony Cray X1 
MHz 1500 667 375 1300 800 
Mem/Node 512GB 2GB 2GB 32GB 16GB 
L1 32K 64K 64K 32K 16K (scalar) 
L2 256K 8MB 8MB 1.5MB 2MB (per 

MSP) 
L3 6MB n/a n/a 128MB n/a 
Proc Peak 
Mflops 

6000 1334 1500 5200 12800 

Peak mem BW 6.4 GBs 5.2GBs 1.6GBs 51 
GBs/MCM 

26 GBs/MSP 

 

 
Figure 5: Stream triad with Co-Array Traffic. 

Figure 5 illustrates that remote accesses have little effect on 
local memory performance. The figure shows the effect of an 
increasing number of processors doing Co-Array Fortran get’s 
or put’s from/to a processor doing the STREAMS triad and 
that aggregate remote memory access to/from a single node 
exceeds 100 GBs. 

 
Figure 6: MPI intra-node bandwidth. 

MPI is not yet fully optimized for the X1, and SHMEM and 
Co-Array Fortran usually perform better. The following two 
graphs show the MPI intra-node bandwidth (Figure 6) and the 
MPI inter-node bandwidth (Figure 7). Tests were performed 
for communication between two processors on the same node 
and then two different nodes using MPI from both EuroBen's 
mod1h and ParkBench comms1. For both benchmarks, the X1 
clearly gains a significant advantage when message sizes rise 
about 8KB.  

 
Figure 7: MPI inter-node bandwidth. 

Part of the improvement for Co-Array Fortran, however, 
often comes from the compiler being able to overlap remote 
memory access with computation. MPI latency is presently 7.3 
microseconds (one-way) for an 8-byte message between X1 
nodes. About 0.5 microseconds is required for each additional 
hop in the torus network. MPI bandwidth for ping-pong 
reaches 12 GBs between nodes.  
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Figure 8: Exchange Bandwidth. 

Figure 8 compares the bandwidth of MPI, SHMEM, and 
Co-Array Fortran when two nodes concurrently exchange 
messages of various sizes. As the message sizes increase, the 
differences across the three implementation strategies 
becomes less significant; however, for message sizes less than 
1MB, Co-Array FORTRAN and SHMEM provide up to one 
order of magnitude improvement in bandwidth.  

 
Figure 9: Allreduce Latency. 

Barriers for the various programming models use the same 
underlying hardware and average about 5 microseconds, 
independent of the number of participating processors at 
current scale. For example, Figure 9 illustrates the time to 
perform an allreduce---a very common operation in scientific 
applications---using a double-word sum operator across 
programming models. These results show that the X1 software 
is able to utilize the underlying hardware efficiently.  

 
Figure 10: Performance of the LANL Parallel Ocean Program 

(POP 1.4.3). 

C. Applications 
Practically, however, these impressive performance results 

on microbenchmarks for the X1 must translate into 
performance improvements in mission applications. Two such 
application areas at ORNL are climate modeling and fusion 
simulations.  

Climate Modeling 
The Parallel Ocean Program (POP) is an ocean modeling 

code developed at Los Alamos National Laboratory that is 
used as the ocean component in the Community System 
Climate Model (CCSM) coupled climate model. Figure 10 
compares the performance of this code on the X1 when using 
a pure MPI implementation and when using Co-Array Fortran 
for two routines: a halo update and an allreduce, used in 
calculating residuals and inner products, respectively, in a 
conjugate gradient linear system solver. Performance on an 
HP AlphaServer SC, an IBM p690 cluster, and an SGI Altix 
are also included in the Figure 10. The performance scalability 
of POP is very sensitive to latency, and MPI latency is 
limiting performance on the Cray X1 compared to that 
achievable using Co-Array Fortran. 

Fusion Simulation 
GYRO is an Eulerian gyrokinetic-Maxwell solver 

developed by R.E. Waltz and J. Candy at General Atomics. It 
is used to study plasma microturbulence in fusion research. 
Figure 6 compares the performance of GYRO on the X1, the 
SGI Altix, and an IBM p690 cluster using both Colony and 
Federation interconnects. GYRO uses the MPI_ALLTOALLV 
command to transpose the distributed data structures and is 
more sensitive to bandwidth than to latency. The IBM results 
indicate the sensitivity of performance to bandwidth, as the 
only difference in performance between the Colony and 
Federation results is message-passing performance. For this 
benchmark, MPI bandwidth on the X1 is not limiting 
scalability. 
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Figure 11: Performance of the GYRO Eulerian Gyrokinetic-

Maxwell Solver (GTC 64-mod benchmark). 

IV. CONCLUSION 
The Cray X1 supercomputer is a distributed shared memory 

vector multiprocessor, scalable to 4096 processors and up to 
65 terabytes of memory. In this paper, we characterize the 
performance of the X1’s distributed shared memory system 
(DSM) and its interconnection network with 
microbenchmarks and applications. 

The distributed shared memory architecture of the X1 
presents a 64-bit global address space, which is directly 
addressable from every processor. From the application 
perspective, this memory system behaves like a Non-Uniform 
Memory Access (NUMA) architecture; however, inter-node 
accesses are not cached. This hardware support for global 
addressability naturally supports programming models like the 
Cray shmem API [2], Unified Parallel C (UPC) [3], Co-Array 
FORTRAN (CAF) [8], and Global Arrays [7]. 

Our experiments show that the high bandwidth and the low 
latency for X1 interconnect translates into improved 
application performance on important applications, such as an 
Eulerian gyrokinetic-Maxwell solver. However, it is 
imperative to select the appropriate programming models to 
exploit these benefits as our benchmarks demonstrate. 

The most recent results and additional performance data 
comparing the X1 with other systems are available at 
www.ccs.ornl.gov/evaluation. 
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