
 1

Performance Evaluation of the Cray X1
Distributed Shared Memory Architecture

Thomas H. Dunigan, Jr., Jeffrey S. Vetter, Patrick H. Worley
Oak Ridge National Laboratory

Abstract—The Cray X1 supercomputer is a distributed shared

memory vector multiprocessor, scalable to 4096 processors and
up to 65 terabytes of memory. The X1’s hierarchical design uses
the basic building block of the multi-streaming processor (MSP),
which is capable of 12.8 GF/s for 64-bit operations. The
distributed shared memory (DSM) of the X1 presents a 64-bit
global address space that is directly addressable from every MSP
with an interconnect bandwidth per computation rate of one byte
per floating point operation. Our results show that this high
bandwidth and low latency for remote memory accesses
translates into improved application performance on important
applications, such as an Eulerian gyrokinetic-Maxwell solver.
Furthermore, this architecture naturally supports programming
models like the Cray shmem API, Unified Parallel C (UPC), and
Co-Array FORTRAN (CAF), and it is imperative to select the
appropriate models to exploit these features as our benchmarks
demonstrate.

I. INTRODUCTION
The Cray X1 supercomputer, introduced in 2002, has a

number of interesting architectural features. Two key items
among these features are the X1’s distributed shared memory
and its vector multiprocessors. Recent studies of the X1’s
vector multiprocessors have shown significant performance
improvements on several applications [1, 5]. In this paper, we
characterize the performance of the X1’s distributed shared
memory system (DSM) and its interconnection network with
microbenchmarks and applications.

The distributed shared memory architecture of the X1
presents a 64-bit global address space, which is directly
addressable from every processor using traditional load and
store instructions. From the application perspective, this
memory system behaves like a Non-Uniform Memory Access

(NUMA) architecture; however, inter-node accesses are not
cached. This hardware support for global addressability
naturally supports programming models like the Cray shmem
API [2], Unified Parallel C (UPC) [3], Co-Array FORTRAN
(CAF) [8], and Global Arrays [7].

This research was sponsored by the Office of Mathematical, Information,

and Computational Sciences, Office of Science, U.S. Department of Energy
under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC.
Accordingly, the U.S. Government retains a nonexclusive, royalty-free license
to publish or reproduce the published form of this contribution, or allow
others to do so, for U.S. Government purposes.

T. H. Dunigan, Jr., is with the Computer Science and Mathematics
Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 5600, Oak
Ridge, TN 37831-6016 USA (e-mail: duniganthjr@ornl.gov).

J. S. Vetter is with the Computer Science and Mathematics Division, Oak
Ridge National Laboratory, P.O. Box 2008, Bldg. 5100, Oak Ridge, TN
37831-6173 (phone: 865-576-7115; e-mail: vetterjs@ornl.gov).

P. H. Worley is with the Computer Science and Mathematics Division, Oak
Ridge National Laboratory, P.O. Box 2008, Bldg. 5600, Oak Ridge, TN
37831-6016 USA (e-mail: worleyph@ornl.gov).

II. CRAY X1 OVERVIEW
The Cray X1 is an attempt to incorporate the best aspects of

previous Cray vector systems and massively parallel
processing (MPP) systems into one design. Like the Cray T90,
the X1 has high memory bandwidth, which is key to realizing
a high percentage of theoretical peak performance. Like the
Cray T3E [10], the X1 has a high-bandwidth, low-latency,
scalable interconnect, and scalable system software. And, like
the Cray SV1, the X1 leverages commodity CMOS
technology and incorporates non-traditional vector concepts,
like vector caches and multi-streaming processors.

A. Multi-streaming Processor (MSP)
The X1 has a hierarchical design with the basic building

block being the multi-streaming processor (MSP), which is
capable of 12.8 GF/s for 64-bit operations (or 25.6 GF/s for
32-bit operations). As illustrated in Figure 1, each MSP is
comprised of four single-streaming processors (SSPs), each
with two 32-stage 64-bit floating-point vector units and one 2-
way super-scalar unit. The SSP uses two clock frequencies,
800 MHz for the vector units and 400 MHz for the scalar unit.
Each SSP is capable of 3.2 GF/s for 64-bit operations. The
four SSPs share a 2 MB “Ecache.”

S

VV

S

VV

S

VV

S

VV

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

S

VV

S

VV

S

VV

S

VV

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

0.5 MB
Ecache

MSP
SSP SSP SSP SSP

Figure 1: Cray MSP module.

Although the Ecache has sufficient single-stride bandwidth
(accessing consecutive memory locations) to saturate the

 2

vector units of the MSP, the Ecache is needed because the
bandwidth to main memory is not enough to saturate the
vector units without data reuse. That is, memory bandwidth is
roughly half the saturation bandwidth. This design represents
a compromise between non-vector-cache systems, like the
NEC SX-6, and cache-dependent systems, like the IBM p690,
with memory bandwidths an order of magnitude less than the
saturation bandwidth. Because of its short cache lines and
extra cache bandwidth, random-stride scatter/gather memory
access on the X1 is just a factor of two slower than stride-one
access, not the factor of eight or more seen with typical cache-
based systems like those based on the IBM Power4, HP
Alpha, or Intel Itanium. The X1's cache-based design deviates
from the full-bandwidth design model only slightly. Each X1
MSP has the single-stride bandwidth of an SX-6 processor; it
is the X1’s higher peak performance that creates an
imbalance. A relatively small amount of data reuse, which
most modern scientific applications do exhibit, can enable a
very high percentage of peak performance to be realized,
though worst-case data access can still provide double-digit
efficiencies.

The X1 compiler has two options for using the eight vector
units of a single MSP. First, it can use all 8 when vectorizing a
single loop. Second, it can split up (or multistream) the work
in an unvectorized outer loop and assign it to the 4 SSPs, each
with two vector units and one scalar unit. (The compiler is
also able to vectorize a “long” outer loop and multistream a
shorter inner loop if the dependency analysis allows this.) The
effective vector length of the first option is 256 elements, the
vector length of the NEC SX-6. The second option, which
attacks parallelism at a different level, allows a shorter vector
length of 64 elements for a vectorized loop. Cray also
supports the option of treating each SSP as a separate
processor.

Cray X1 Node

MSP MSP MSP MSP

16 M Chips
16 M Banks

I/O I/O

Figure 2: Cray X1 node.

As Figure 2 illustrates, four MSPs, 16 memory controller
chips (M-chips), and 32 memory daughter cards form a Cray
X1 node. The memory banks of a node provide 204 GB/s of
bandwidth, enough to saturate the paths to the local MSPs and
service requests from remote MSPs. Local memory latency is
uniform for all processors within a node. Each bank of shared
memory is connected to a number of banks on remote nodes,

with an aggregate bandwidth of roughly 50 GByte/sec
between nodes. ECC memory provides reliability by
correcting single-bit errors, detecting multiple-bit errors, and
providing chip-kill error detection.

This represents one byte per floating point operation (flop)
of interconnect bandwidth per computation rate, compared to
0.25 bytes per flop on the Earth Simulator [11] and less than
0.1 bytes per flop expected on an IBM p690 with the
maximum number of Federation connections. The collected
nodes of an X1 have a single system image.

B. Interconnect Overview
In large configurations, the X1 nodes are connected by a

modified 2-D torus. This topology has relatively low bisection
bandwidth compared to crossbar-style interconnects [4], such
as those on the NEC SX-6 and IBM SP. Whereas bisection
bandwidth scales as the number of nodes, O(n), for crossbar-
style interconnects, it scales as the 2/3 root of the number of
nodes, O(n2/3), for a 3D torus. Despite this theoretical
limitation, mesh-based systems, such as the Intel Paragon, the
Cray T3E, and ASCI Red, have scaled well to thousands of
processors.

The Cray X1 nodes are connected using X1 routing
modules. Each node has 32 1.6 GBs full duplex links. Each
memory module has an even and odd 64-bit (data) link
forming a plane with the corresponding memory modules on
neighboring nodes. The local memory bandwidth is 200 GB/s,
enough to service both local and remote memory requests. A
4-node X1 can be connected directly via the memory modules
links. With 8 or fewer cabinets (up to 128 nodes or 512
MSPs), the interconnect topology is a 4-D hypercube.
However, larger configurations use a modified 2D torus.

Figure 3: Cray X1 cabinets.

As Figure 3 shows, an X1 cabinet is comprised of 16 node
boards and 4 routing boards. Each routing board has 8 routing
modules. The routing module ASIC is an 8-way non-blocking
crossbar switch supporting worm-hole routing. The routing
module supports prioritization based on credits or aging. Ports
are connected to the node boards or other router ports with 96-
pin cables with a maximum length of 4 meters. Data packets

 3

carry a CRC, and if a CRC error is detected at the receiver, the
packet is resent. MPI latency increase by about 500 ns per
router hop. Software-loaded configuration tables are used for
data flow mapping across the interconnection network. At
system boot, these tables are initialized, but they can be
reloaded to provide a means to reconfigure the network
around hardware failures.

Synchronization is provided by atomic in-memory
operations that can be used to provide fast (sub-microsecond),
scalable communications, such as locks and barriers. In
particular, the X1 provides explicit memory ordering
instructions for local ordering (LSYNC), MSP ordering
(MSYNC), and global ordering (GSYNC). It also provides the
basic atomic memory operations like fetch&op. Although
these operations are efficient because they do not require a
cache-line of data, they are not ordered with respect to other
memory references and must be synchronized using the
memory ordering instructions.

C. Local and Remote Memory Accesses
A single four-MSP X1 node behaves like a traditional SMP.

Like the T3E, each processor has the additional capability of
directly addressing memory on any other node. Different,
however, is the fact that these remote memory accesses are
issued directly from the processors as load and store
instructions, going transparently over the X1 interconnect to
the target processor, bypassing the local cache. This
mechanism is more scalable than traditional shared memory,
but it is not appropriate for shared-memory programming
models, like OpenMP [9], outside of a given four-MSP node.
This remote memory access mechanism is a natural match for
distributed-memory programming models, particularly those
using one-sided put/get operations.

64-bit Virtual Address

Memory Region (useg, kseg, kphys): 2 bits
Must Be Zero: 14 bits

Page Offset: 16 bits
Possible Page Boundaries (64K-4GB): 16 bits

Virtual Page Number (VPN): 16 bits

Offset: 36 bits

Physical address space (Main mem, MMR, I/O): 2 bits

48-bit Physical Address

Node: 10 bits

Figure 4: Cray X1 address translation.

As Figure 4 explains, the X1 64-bit global virtual address
decomposes into two parts: two bits to select the memory
region and 48 bits for a virtual page number, page boundaries,
and page offset. The page size can range from 64KB to 4 GB,
selectable at execution time with possibly different page sizes
for text and data areas.

The 48-bit physical address decomposes into a 2-bit
physical address region marker, a 10-bit node number, and a
36-bit offset. The 10-bit node number limits the maximum X1
configuration to 1024 nodes (4096 MSPs). The address
translation scheme uses 256-entry TLBs on each node and

allows non-contiguous multi-node jobs. Page offsets are
translated remotely, so the TLB only needs to hold
translations for one node. This design scheme allows the
system to scale with the number of nodes with no additional
TLB misses. Memory latency can be hidden with the help of
the compiler; the hardware dynamically unrolls loops, does
scalar and vector renaming, and issues scalar and vector loads
early. Vector load buffers permit 2048 outstanding loads for
each MSP. Non-allocating references can bypass the cache for
remote communication, to avoid cache pollution, and to
provide efficient large-stride (or scatter/gather) support.

III. PERFORMANCE
This section describes some of our results in evaluating the

Cray X1 and its memory hierarchy. These tests were
conducted on the 8 cabinet, 512 MSP X1 located at Oak
Ridge National Laboratory (ORNL). Our evaluation uses both
standard and custom benchmarks as well as application
kernels and full applications.

A. Programming models
An X1 node (4 MSPs) supports a cache-coherent shared

memory, and Cray supports OpenMP, System V shared
memory, and POSIX threads shared memory programming
(SMP) models. In addition, the compilers can treat the node
processors as 4 streaming MSP’s (MSP mode) or 16
individual SSPs (SSP mode). Each node can have from 8 to
32 Gbytes of local memory.

Cray supports several distributed memory programming
models for the X1, including MPI, SHMEM, Co-Array
FORTRAN, and UPC. For MPI message-passing, the
minimum addressable unit is an MSP (or an SSP if the job is
compiled in SSP mode.) For UPC and Co-Array Fortran, the
compiler can overlap computation with remote memory
requests, due to the decoupled microarchitecture that allows
the scalar unit to prepare operands and addresses for the
vector unit.

The programmer can mix node-level SMP with both MPI
and direct access (shmem, UPC, or Co-Array Fortran) to
remote memory. Synchronization (locks and barriers) are
handled in hardware. Exploiting this diverse set of
programming models is one of the opportunities of the X1.

The compilers also provide directives to assist in
parallelization and external memory management (e.g., no
caching for designated variables). Scientific libraries provide
efficient management of the Ecache and vector pipes. The
user can specify page size for text and data areas when
initiating an executable. The resource management system
provides processor allocation, job migration, and batch
scheduling.

Table 1 provides the basic configurations of each
platform used in this experimental evaluation.

B. Microbenchmarks
We use a collection of microbenchmarks to characterize the

performance of the underlying hardware, compilers, and
software libraries. The STREAMS [6] triad memory

 4

bandwidth is 24 GBs for a streaming MSP or 40 GBs
(aggregate) for 4 SSPs. This compares favorably with the
Japanese Earth Simulator NEC SX-6 bandwidth of 30 GBs.
Remote memory access bandwidth peaks at about 30 GBs for
the X1 (using Co-Array Fortran).

Table 1: Platform Configurations.

 SGI Altix Alpha SC IBM SP3 IBM SP4 Cray X1
Proc Itanium 2 Alpha EV67 POWER3-

II
POWER4 Cray X1

Interconnect Numalink Quadrics Colony Colony Cray X1
MHz 1500 667 375 1300 800
Mem/Node 512GB 2GB 2GB 32GB 16GB
L1 32K 64K 64K 32K 16K (scalar)
L2 256K 8MB 8MB 1.5MB 2MB (per

MSP)
L3 6MB n/a n/a 128MB n/a
Proc Peak
Mflops

6000 1334 1500 5200 12800

Peak mem BW 6.4 GBs 5.2GBs 1.6GBs 51
GBs/MCM

26 GBs/MSP

Figure 5: Stream triad with Co-Array Traffic.

Figure 5 illustrates that remote accesses have little effect on
local memory performance. The figure shows the effect of an
increasing number of processors doing Co-Array Fortran get’s
or put’s from/to a processor doing the STREAMS triad and
that aggregate remote memory access to/from a single node
exceeds 100 GBs.

Figure 6: MPI intra-node bandwidth.

MPI is not yet fully optimized for the X1, and SHMEM and
Co-Array Fortran usually perform better. The following two
graphs show the MPI intra-node bandwidth (Figure 6) and the
MPI inter-node bandwidth (Figure 7). Tests were performed
for communication between two processors on the same node
and then two different nodes using MPI from both EuroBen's
mod1h and ParkBench comms1. For both benchmarks, the X1
clearly gains a significant advantage when message sizes rise
about 8KB.

Figure 7: MPI inter-node bandwidth.

Part of the improvement for Co-Array Fortran, however,
often comes from the compiler being able to overlap remote
memory access with computation. MPI latency is presently 7.3
microseconds (one-way) for an 8-byte message between X1
nodes. About 0.5 microseconds is required for each additional
hop in the torus network. MPI bandwidth for ping-pong
reaches 12 GBs between nodes.

 5

Figure 8: Exchange Bandwidth.

Figure 8 compares the bandwidth of MPI, SHMEM, and
Co-Array Fortran when two nodes concurrently exchange
messages of various sizes. As the message sizes increase, the
differences across the three implementation strategies
becomes less significant; however, for message sizes less than
1MB, Co-Array FORTRAN and SHMEM provide up to one
order of magnitude improvement in bandwidth.

Figure 9: Allreduce Latency.

Barriers for the various programming models use the same
underlying hardware and average about 5 microseconds,
independent of the number of participating processors at
current scale. For example, Figure 9 illustrates the time to
perform an allreduce---a very common operation in scientific
applications---using a double-word sum operator across
programming models. These results show that the X1 software
is able to utilize the underlying hardware efficiently.

Figure 10: Performance of the LANL Parallel Ocean Program

(POP 1.4.3).

C. Applications
Practically, however, these impressive performance results

on microbenchmarks for the X1 must translate into
performance improvements in mission applications. Two such
application areas at ORNL are climate modeling and fusion
simulations.

Climate Modeling
The Parallel Ocean Program (POP) is an ocean modeling

code developed at Los Alamos National Laboratory that is
used as the ocean component in the Community System
Climate Model (CCSM) coupled climate model. Figure 10
compares the performance of this code on the X1 when using
a pure MPI implementation and when using Co-Array Fortran
for two routines: a halo update and an allreduce, used in
calculating residuals and inner products, respectively, in a
conjugate gradient linear system solver. Performance on an
HP AlphaServer SC, an IBM p690 cluster, and an SGI Altix
are also included in the Figure 10. The performance scalability
of POP is very sensitive to latency, and MPI latency is
limiting performance on the Cray X1 compared to that
achievable using Co-Array Fortran.

Fusion Simulation
GYRO is an Eulerian gyrokinetic-Maxwell solver

developed by R.E. Waltz and J. Candy at General Atomics. It
is used to study plasma microturbulence in fusion research.
Figure 6 compares the performance of GYRO on the X1, the
SGI Altix, and an IBM p690 cluster using both Colony and
Federation interconnects. GYRO uses the MPI_ALLTOALLV
command to transpose the distributed data structures and is
more sensitive to bandwidth than to latency. The IBM results
indicate the sensitivity of performance to bandwidth, as the
only difference in performance between the Colony and
Federation results is message-passing performance. For this
benchmark, MPI bandwidth on the X1 is not limiting
scalability.

 6

Figure 11: Performance of the GYRO Eulerian Gyrokinetic-

Maxwell Solver (GTC 64-mod benchmark).

IV. CONCLUSION
The Cray X1 supercomputer is a distributed shared memory

vector multiprocessor, scalable to 4096 processors and up to
65 terabytes of memory. In this paper, we characterize the
performance of the X1’s distributed shared memory system
(DSM) and its interconnection network with
microbenchmarks and applications.

The distributed shared memory architecture of the X1
presents a 64-bit global address space, which is directly
addressable from every processor. From the application
perspective, this memory system behaves like a Non-Uniform
Memory Access (NUMA) architecture; however, inter-node
accesses are not cached. This hardware support for global
addressability naturally supports programming models like the
Cray shmem API [2], Unified Parallel C (UPC) [3], Co-Array
FORTRAN (CAF) [8], and Global Arrays [7].

Our experiments show that the high bandwidth and the low
latency for X1 interconnect translates into improved
application performance on important applications, such as an
Eulerian gyrokinetic-Maxwell solver. However, it is
imperative to select the appropriate programming models to
exploit these benefits as our benchmarks demonstrate.

The most recent results and additional performance data
comparing the X1 with other systems are available at
www.ccs.ornl.gov/evaluation.

ACKNOWLEDGEMENTS
The authors gratefully acknowledge Cray Inc. for their

ongoing cooperation, and, in particular, Steve Scott and James
Schwarzmeier.

REFERENCES
[1] P.A. Agarwal, R.A. Alexander et al., “Cray X1

Evaluation Status Report,” ORNL, Oak Ridge, TN,
Technical Report ORNL/TM-2004/13, 2004.

[2] R. Barriuso and A. Knies, “SHMEM Users Guide,” Cray
Research, Inc. 1994.

[3] W.W. Carlson, J.M. Draper et al., “Introduction to UPC
and language specification,” Center for Computing

Sciences, IDA,, Bowie, MD, Technical Report CCS-TR-
99-157, 1999.

[4] W.J. Dally and B. Towles, Principles and practices of
interconnection networks. San Francisco: Morgan
Kaufmann Publishers, 2003.

[5] T.H. Dunigan, Jr., M.R. Fahey et al., “Early Evaluation of
the Cray X1,” Proc. ACM/IEEE Conference on High
Performance Networking and Computing (SC03), 2003.

[6] J.D. McCalpin, Stream Benchmarks,
http://www.cs.virginia.edu/stream, 2002.

[7] J. Nieplocha, R.J. Harrison, and R.J. Littlefield, “Global
Arrays: A portable shared memory model for distributed
memory computers,” Proc. Supercomputing 94, 1994, pp.
340-9.

[8] R.W. Numrich and J. Reid, “Co-Array Fortran for parallel
programming,” ACM SIGPLAN FORTRAN Forum,
17(1998):1-31, 1998.

[9] OpenMP, OpenMP Reference, http://www.openmp.org,
1999.

[10] S.L. Scott, “Synchronization and Communication in the
T3E Multiprocessor,” Proc. Architectural Support for
Programming Languages and Operating Systems
(ASPLOS), 1996, pp. 26-36.

[11] S. Shingu, Y. Tsuda et al., “A 26.58 Tflops Global
Atmospheric Simulation with the Spectral Transform
Method on the Earth Simulator,” Proc. SC2002, 2002.

www.ccs.ornl.gov/evaluation
http://www.cs.virginia.edu/stream
http://www.openmp.org/

	Introduction
	Cray X1 Overview
	Multi-streaming Processor (MSP)
	Interconnect Overview
	Local and Remote Memory Accesses

	Performance
	Programming models
	Microbenchmarks
	Applications
	Climate Modeling
	Fusion Simulation

	Conclusion
	Acknowledgements
	References

