
Early Performance Evaluation of the Cray X1 at Oak Ridge

National Laboratory ∗

P. H. Worley †

T. H. Dunigan, Jr. ‡

Abstract

Oak Ridge National Laboratory recently installed a 32 processor Cray X1. In this paper, we describe
our initial performance evaluation of the system, including microbenchmark data quantifying processor,
memory, and network performance, and kernel data quantifying the impact of different approaches to
using the system.

1 Introduction

The mainstream of parallel supercomputing in the
U.S. has for some time been dominated by clusters of
commodity shared-memory processors (SMPs). The
Department of Energy’s (DOE) Accelerated Strate-
gic Computing Initiative (ASCI), the National Sci-
ence Foundation’s (NSF) Extensible Terascale Fa-
cility (ETF), and, with a few exceptions, the De-
partment of Defense’s (DOD) High Performance
Computing Modernization Program are all follow-
ing this path. This technology path provides ex-
cellent price/performance when measured from the
theoretical peak speed, but many applications (e.g.,
climate, combustion) sustain only a small fraction
of this speed. Indeed, over the past decade, the
sustained fraction of peak performance achieved by
these applications has been falling steadily. Many
factors account for this, but foremost are the in-
creasing disparity between the speed of processors
and memory and the design of processors for com-
modity applications rather than high-end scientific
simulations. Illustrative of an alternative path is the
Japanese Earth Simulator, which recently attracted
attention (including several Gordon Bell prizes at
the SC2002 conference) by sustaining a large frac-

tion of its 40 TFLOP/s peak performance on sev-
eral scientific applications. This performance advan-
tage was realized by employing relatively few (5,120)
powerful (8 GFlops/sec) vector processors connected
to high-bandwidth memory and coupled by a high-
performance network.

The X1 is the first of Cray’s new scalable vec-
tor systems. 1 The X1 is characterized by high-
speed custom vector processors, high memory band-
width, and a high-bandwidth, low-latency intercon-
nect linking the nodes. The efficiency of the proces-
sors in the Cray X1 is anticipated to be comparable
to the efficiency of the NEC SX-6 processors in the
Earth Simulator on many computational science ap-
plications. A significant feature of the Cray X1 is
that it attempts to combine the processor perfor-
mance of traditional vector systems with the scala-
bility of modern microprocessor-based architectures.

Oak Ridge National Laboratory (ORNL) re-
cently procured a Cray X1 for evaluation. A 32
processor system was delivered at the end of March,
2003, and delivery of a 256 processor system will
be complete by the end of September, 2003. Pro-
cessor performance, system performance, and pro-
duction computing readiness are all being evaluated.
The evaluation approach focuses on scientific appli-

∗This research was sponsored by the Office of Mathematical, Information, and Computational Sciences, Office of Science,
U.S. Department of Energy under Contract No. DE-AC05-00OR22725 with UT-Batelle, LLC. Accordingly, the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to
do so, for U.S. Government purposes.

†Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN
37831-6367 (WorleyPH@ornl.gov)

‡Computer Science and Mathematics Division, Oak Ridge National Laboratory, P.O. Box 2008, Bldg. 6012, Oak Ridge, TN
37831-6367 (DuniganTHJr@ornl.gov)

1See http://www.cray.com/products/systems/x1/ for more details.

2 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

cations and the computational needs of the science
and engineering research communities. The primary
tasks of this evaluation are to:

1. evaluate benchmark and application perfor-
mance and compare with systems from other
high performance computing (HPC) vendors,

2. determine the most effective approaches for us-
ing the Cray X1,

3. evaluate system and system administration
software reliability and performance, and

4. predict scalability, both in terms of problem
size and number of processors.

In this paper, we describe initial results from the
first two evaluation tasks.

2 Cray X1 Description

The Cray X1 is an attempt to incorporate the
best aspects of previous Cray vector systems and
massively-parallel-processing (MPP) systems into
one design. Like the Cray T90, the X1 has high
memory bandwidth, which is key to realizing a high
percentage of theoretical peak performance. Like the
Cray T3E, the design has a high-bandwidth, low-
latency, scalable interconnect, and scalable system
software. And, like the Cray SV1, the X1 design
leverages commodity CMOS technology and incor-
porates non-traditional vector concepts, like vector
caches and multi-streaming processors.

The Cray X1 is hierarchical in processor, mem-
ory, and network design. The basic building block is
the multi-streaming processor (MSP), which is capa-
ble of 12.8 GFlops/sec for 64-bit operations. Each
MSP is comprised of four single streaming proces-
sors (SSPs), each with two 32-stage 64-bit floating
point vector units and one 2-way super-scalar unit.
The SSP uses two clock frequencies, 800 MHz for the
vector units and 400 MHz for the scalar unit. Each
SSP is capable of 3.2 GFlops/sec for 64-bit opera-
tions. The four SSPs share a 2 MB “Ecache”.

The primary strategy for utilizing the eight vec-
tor units of a single MSP is parallelism through outer
loops and pipelined operations. However, Cray does
support the option of treating each SSP as a sep-
arate processor. The Ecache has sufficient single-
stride bandwidth to saturate the vector units of the
MSP. The Ecache is needed because the bandwidth
to main memory is not enough to saturate the vec-
tor units without data reuse - memory bandwidth is
roughly half the saturation bandwidth.

Four MSPs and a flat, shared memory of 16 GB
form a Cray X1 node. The memory banks of a node
provide 200 GB/s of bandwidth, enough to saturate
the paths to the local MSPs and service requests
from remote MSPs. Each bank of shared memory
is connected to a number of banks on remote nodes,
with an aggregate bandwidth of roughly 50 GB/s
between nodes. This represents a byte per flop of
interconnect bandwidth per computation rate, com-
pared to 0.25 bytes per flop on the Earth Simulator
and less than 0.1 bytes per flop expected on an IBM
p690 with the maximum number of Federation con-
nections. The collected nodes of an X1 have a single
system image.

A single four-processor X1 node behaves like a
traditional SMP, but each processor has the addi-
tional capability of directly addressing memory on
any other node (like the T3E). Remote memory ac-
cesses go directly over the X1 interconnect to the re-
questing processor, bypassing the local cache. This
mechanism is more scalable than traditional shared
memory, but it is not appropriate for shared-memory
programming models, like OpenMP [12], outside of
a given four-processor node. This remote memory
access mechanism is a good match for distributed-
memory programming models, particularly those us-
ing one-sided put/get operations.

In large configurations, the Cray X1 nodes are
connected in an enhanced 3D torus. This topol-
ogy has relatively low bisection bandwidth com-
pared to crossbar-style interconnects, such as those
on the NEC SX-6 and IBM SP. Whereas bisection
bandwidth scales as the number of nodes, O(n), for
crossbar-style interconnects, it scales as the 2/3 root
of the number of nodes, O(n2/3), for a 3D torus.
Despite this theoretical limitation, mesh-based sys-
tems, such as the Intel Paragon, the Cray T3E, and
ASCI Red, have scaled well to thousands of proces-
sors.

3 Evaluation Overview

In this paper we describe data obtained from mi-
crobenchmarking, application kernel optimization
and benchmarking, and application benchmarking.

3.1 Microbenchmarking.

The objective of the microbenchmarking is to char-
acterize the performance of the underlying architec-
tural components of the Cray X1. Both standard
benchmarks and customized benchmarks are being
used. The standard benchmarks allow component

Early Evaluation of the Cray X1 3

performance to be compared with other computer
architectures. The custom benchmarks permit the
unique architectural features of the Cray X1 (dis-
tributed vector units, and cache and global memory)
to be tested with respect to the target applications.

In the architectural-component evaluation we as-
sess the following.

1. Scalar and vector arithmetic performance, in-
cluding varying vector length and stride and
identifying what limits peak computational
performance.

2. Memory-hierarchy performance, including
cache, local memory, shared memory, and
global memory. These tests utilize both Sys-
tem V shared memory and the SHMEM primi-
tives [5], as well as Unified Parallel C (UPC) [3]
and Co-Array Fortran [11]. Of particular in-
terest is the performance of the shared memory
and global memory, and how remote accesses
interact with local accesses.

3. Task and thread performance, includ-
ing performance of thread creation, locks,
semaphores, and barriers. Of particular in-
terest is how explicit thread management
compares with the implicit control provided
by OpenMP, and how thread scheduling and
memory/cache management (affinity) per-
form.

4. Message-passing performance, including intra-
node and inter-node MPI [9] performance for
one-way (ping-pong) messages, message ex-
changes, and aggregate operations (broad-
cast, all-to-all, reductions, barriers); message-
passing hotspots and the effect of message
passing on the memory subsystem are of par-
ticular interest.

5. System and I/O performance, including a set
of tests to measure OS overhead (context
switches), virtual memory management, low-
level I/O (serial and parallel), and network
(TCP/IP) performance.

3.2 Kernels and Performance Opti-
mization.

The Cray X1 has a number of unique architectural
features, and coding style and parallel programming
paradigm are anticipated to be as important as the
compiler in achieving good performance. In partic-
ular, early indications are that coding styles that

perform well on the NEC vector systems do not nec-
essarily perform well on the X1.

Unlike traditional vector machines, the vector
units are independent within the X1 MSP. As such,
the compiler must be able to identify parallelism for
“multistreaming” in addition to vectorization, and
to exploit memory access locality in order to min-
imize cache misses and memory accesses. As de-
scribed earlier, an alternative approach is to treat
the four SSPs making up an MSP as four (3.2
GFlops/sec peak) vector processors, assigning sep-
arate processes to each. This takes the responsbility
of assigning work to the vector units away from the
compiler and gives it to the user, and may achieve
higher performance for certain applications.

Each node in the Cray X1 has 4 MSPs in a
shared-memory configuration with a network that
supports globally addressable memory. How best to
program for the hierarchical parallelism represented
by clusters of SMP nodes is typically both system
and application specific. The addition of both multi-
streaming and vectorization makes it even less clear
which of the many shared- and distributed-memory
programming paradigms are most appropriate for
a given application. Cray currently supports the
MPI programming paradigm, as well as the SHMEM
one-sided communication library and the Co-Array
Fortran and UPC parallel programming languages.
OpenMP is expected to be supported later in the
summer of 2003. System V shared-memory, Multi-
Level Parallelism (MLP) [13], and Global Arrays [10]
are also possible programming models for the Cray
X1.

These usability and optimization issues are diffi-
cult to examine with either microbenchmarks, which
do not measure the difficulty of implementing a given
approach in an application code, and full application
codes, in which it is not feasible to modify to try all
of the different approaches. The approach we take
is to identify representative kernels and use these
to examine the performance impact of a variety of
coding styles. The goal is not just to choose the
best programming paradigm, assuming that one is
clearly better than the others, but also to evaluate
what can be gained by rewriting codes to exploit a
given paradigm. Because of their complexity, many
of the important scientific and engineering applica-
tion codes will not be rewritten unless significant
performance improvement is predicted. The evalua-
tion data will also allow us to interpret the fairness
of using a given benchmark code implemented using,
for example, pure MPI-1 or OpenMP, when compar-
ing results between platforms.

4 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

3.3 Application evaluation and
benchmarking.

A number of Department of Energy (DOE) Office of
Science application codes from the areas of global cli-
mate, fusion, materials, chemistry, and astrophysics
have been identified as being important to the DOE
evaluation of the X1. In the paper and talk, we
examine the performance of one of the codes - the
Parallel Ocean Program (POP) [7].

The Parallel Ocean Program (POP) is the
ocean component of the Community Climate Sys-
tem Model (CCSM) [2], the primary model for global
climate simulation in the U.S. POP is developed
and maintained at Los Alamos National Laboratory
(LANL). The code is based on a finite-difference for-
mulation of the three-dimensional flow equations on
a shifted polar grid.

POP has proven amenable to vectorization on
the SX-6, and the expectation is that the same
will hold true on the X1. The two primary pro-
cesses in POP tests the Cray X1 in different ways.
The “baroclinic” process is three dimensional with
limited nearest-neighbor communication and should
scale well. The “barotropic” process, however, in-
volves a two-dimensional, implicit solver and limits
scalability. This two-dimensional process tests the
latency of the X1 interconnect; early POP results
from the NEC SX-6 show that latency is a signifi-
cant bottleneck. The effectiveness of targeted com-
munication optimizations to minimize latency, such
as replacing MPI-1 calls with Co-Array Fortran, is
being investigated.

4 Evaluation Results

All experiments were run using version 2.1.06 of
the UNICOS/mp operating system, version 4.3.0.0
of the Cray Fortran and C compilers and math li-
braries, and version 2.1.1.0 of the MPI and SHMEM
libraries. For comparison purposes, performance
data is also presented for the following systems.

• Earth Simulator: 640 8-way vector SMP nodes
and a 640x640 single-stage crossbar intercon-
nect. Each processor has 8 64-bit floating
point vector units running at 500 Mhz.

• HP/Compaq AlphaServer SC at Pittsburgh
Supercomputing Center: 750 ES45 4-way SMP
nodes and a Quadrics QsNet interconnect.
Each node has two interconnect interfaces.
The processors are the 1GHz Alpha 21264
(EV68).

• HP/Compaq AlphaServer SC at ORNL: 64
ES40 4-way SMP nodes and a Quadrics QsNet
interconnect. Each node has one interconnect
interface. The processors are the 667MHz Al-
pha 21264a (EV67).

• IBM p690 cluster at ORNL: 27 32-way p690
SMP nodes and an SP Switch2. Each node has
2 to 8 Corsair (Colony on PCI) interconnect
interfaces. The processors are the 1.3 GHz
POWER4.

• IBM SP at the National Energy Re-
search Supercomputer Center (NERSC): 184
Nighthawk(NH) II 16-way SMP nodes and an
SP Switch2. Each node has two interconnect
interfaces. The processors are the 375MHz
POWER3-II.

• IBM SP at ORNL: 176 Winterhawk (WH) II 4-
way SMP nodes and an SP Switch. Each node
has one interconnect interface. The processors
are the 375MHz POWER3-II.

• NEC SX-6 at the Artic Region Supercomput-
ing Center: 8-way SX-6 SMP node. Each pro-
cessor has 8 64-bit floating point vector units
running at 500 MHz.

• SGI Origin 3000 at Los Alamos National Lab-
oratory: 512-way SMP node. Each processor
is a 500 MHz MIPS R14000.

The evaluation team has had access to the X1 for
approximately one month, and an update of the sys-
tem software two weeks ago necessitated rerunning
many of the experiments. In consequence, none of
our evaluations are complete. However, data has
been collected that illuminates a number of impor-
tant performance issues, including

• range of serial performance. As in previous
vector systems, the Cray X1 processor has a
large performance range. Code that vector-
izes and streams (uses multiple SSPs) well can
achieve near peak performance. Code that
runs on the scalar unit demonstrates poor per-
formance.

• memory performance. Can the memory hier-
archy keep the vector units busy? Can pro-
cesses on separate MSPs contend for memory
bandwidth?

Early Evaluation of the Cray X1 5

• SSP vs. MSP. What are the advantages or dis-
advantages to running in SSP mode (assigning
separate processes to individual SSPs) com-
pared to running in MSP mode?

• page size. At run time, the user can specify
whether to run using 64 KB, 1 MB, 4 MB,
16 MB, or 64 MB pages. The default within a
4-way SMP node is 64 KB pages, while the de-
fault when running across more than one node
is 16 MB pages. Does this make a performance
difference?

• communication protocol. When using MPI,
which of the many MPI commands should be
used to implement point-to-point communica-
tion.

• alternatives to MPI. What are the perfor-
mance advantages of SHMEM and Co-Array
Fortran?

While only preliminary results are presented
here, additional data will be posted on the Eval-
uation of Early Systems project web pages at
http://www.csm.ornl.gov/evaluation.

4.1 Standard Benchmarks

We are running a number of standard low-level and
kernel benchmarks on the Cray X1 to identify per-
formance potential and bottlenecks of the compu-
tational units and the memory subsystem. As stan-
dard benchmarks, we have not modified them in any
way, except for linking in vendor libraries where ap-
propriate.

4.1.1 Computation Benchmarks.

The first three serial benchmarks indicate the range
of performance that can be seen on the X1.

DGEMM. Figure 4.1 compares the performance
of the vendor scientific libraries for a matrix multiply
with DGEMM [4] on an X1 MSP with the perfor-
mance on other IBM and HP systems.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 100 200 300 400 500 600 700 800 900 1000

M
fl

o
p

s/
se

c

Matrix Order

Matrix Multiply Benchmark (DGEMM)

Cray X1 (1 MSP)
IBM p690

HP/Compaq ES45
HP/Compaq ES40

IBM SP (Winterhawk II)

Figure 4.1: Single processor DGEMM
performance

From these data it is clear that it is possible to
achieve near peak (> 80%) performance on compu-
tationally intensive kernels.

MOD2D. Figure 4.2 illustrates the single proces-
sor performance of a dense eigenvalue benchmark
(Euroben MOD2D [14]) using the vendor-supplied
scientific libraries. On the X1, we used a single MSP.
For this benchmark, we increased the problem size
for the X1 to illustrate that its performance is still
improving with larger matrices.

 0

 500

 1000

 1500

 2000

 2500

 3000

 0 200 400 600 800 1000 1200 1400 1600

M
fl

o
p

s/
se

c

Matrix Order

Dense Eigenvalue Benchmark (Euroben MOD2D)

Cray X1 (1 MSP)
IBM p690

IBM SP (Winterhawk II)
HP/Compaq ES40

Figure 4.2: Single processor MOD2D
performance

Performance is good for large problem sizes relative
to the IBM and HP systems, but the percentage of
peak is much lower than for DGEMM for these prob-
lem sizes. The eigenvalue routines in the Cray scien-
tific library (libsci) may not yet have received the
same attention as the matrix multiply routines, and
MOD2D performance may improve over time.

6 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

MOD2E. Figure 4.3 describes the single proces-
sor performance for the Euroben MOD2E bench-
mark [14], eigenvalue analysis of a sparse system
implemented in Fortran. Note that the performance
metric here is iterations per second (of the iterative
algorithm), and that larger is better.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

It
er

at
io

n
s/

se
c

Matrix Order

Sparse Eigenvalue Benchmark (Euroben MOD2E)

IBM p690
HP/Compaq ES40

IBM SP (Winterhawk II)
Cray X1 (1 MSP)

Figure 4.3: Single processor MOD2E
performance.

The performance MOD2E on the X1 is poor com-
pared to the nonvector systems. While aggressive
compiler optimizations were enabled, this bench-
mark was run unmodified, that is, none of the loops
were modified nor were compiler directives inserted
to enhance vectorization or streaming. Whether the
performance problem is due to the nature of the
benchmark problem or the nature of the code is not
yet clear. The lesson is clear however - it is impor-
tant to exploit the vector units if good performance
is to be achieved.

4.1.2 Memory Benchmarks.

STREAMS. McCalpin’s STREAMS bench-
mark [8] measures sustainable memory bandwidth.
Figure 4.4 compares the triad bandwidth of an X1
MSP with other architectures.

 100

 1000

 10000

 100000

 1e+06

 0 5 10 15 20 25 30 35

M
B

/s
ec

Processors

Aggregate STREAM triad bandwidth

NEC SX6
Cray X1

IBM p690
HP/Compaq ES45
HP/Compaq ES40

IBM SP (Nighthawk II)
IBM SP (Winterhawk II)

Figure 4.4: STREAMS triad bandwidth

From these data, the X1 has nearly the same mem-
ory bandwidth as the NEC SX-6, and more than the
nonvector systems. Note that results are limited to
processors within a single SMP node for all systems
except the X1. When using more than 4 MSP pro-
cessors, more than one X1 node is required.

4.1.3 Communication Benchmarks.

Latency and bandwidth are often slippery concepts,
in that they can be difficult to associate with per-
formance observed in application codes. Using stan-
dard point-to-point comunication tests produces the
following estimates for the Cray X1:

latency bandwidth
(microseconds) MB/sec

MPI
intranode 8.2 13914
internode 8.6 11928

In contrast, SHMEM and Co-Array latency are
3.8 and 3.0 microseconds, respectively. Maximum
bandwidth is similar to that of MPI. The next bench-
mark attempts to measure communication perfor-
mance in the context of a common application.

HALO. Wallcraft’s HALO benchmark [15] sim-
ulates the nearest neighbor exchange of a 1-2
row/column “halo” from a 2-D array. This is a com-
mon operation when using domain decomposition
to parallelize (say) a finite difference ocean model.
There are no actual 2-D arrays used, but instead
the copying of data from an array to a local buffer
is simulated and this buffer is transferred between
nodes.

In Figure 4.5, we compare the relative perfor-
mance of a HALO exchange between 16 processors
(MSPs) for SHMEM, MPI, and co-arrays.

Early Evaluation of the Cray X1 7

 0

 20

 40

 60

 80

 100

 120

 140

 1 10 100 1000

m
ic

ro
se

co
n

d
s

Words

HALO exchange on the Cray X1

MPI
SHMEM

Co-Array Fortran

Figure 4.5: HALO: Comparison of Co-Array
Fortran, MPI, and SHMEM performance.

From these results, there is a clear advantage from
using SHMEM or Co-Array Fortran in such latency-
dominated kernels.

The MPI data described in Figure 4.5 are the
best timings from a number of different MPI imple-
mentations. Figure 4.6 describes the performance of
all of the candidate MPI implementations.

 0

 50

 100

 150

 200

 1 10 100 1000 10000

m
ic

ro
se

co
n

d
s

Words

HALO MPI Performance on the X1

MPI protocols on 16 MSPs
persistent isend/irecv

sendrecv protocol
persistent irecv/isend

isend/irecv
irecv/isend

Figure 4.6: HALO: Performance comparison of
different MPI protocols for exchange.

The optimal implementation for all halo sizes uses a
persistent MPI ISEND/MPI IRECV exchange pro-
tocol.

Figure 4.7 compares the HALO performance of
the best MPI implementations on the IBM p690 and
the Cray X1.

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

m
ic

ro
se

co
n

d
s

Words

HALO MPI Performance Comparison

Cray X1 (16 MSPs)
IBM p690 (16 processors)

Figure 4.7: HALO: MPI performance
intercomparison.

While the Cray X1 MPI performance is much bet-
ter than that of the IBM p690 for large halos, the
opposite is true for small halos. Note, however, that
the IBM p690 performance for small halos is close
to that for SHMEM on the X1. It is interesting that
the X1 times are much higher than the 8-byte mes-
sage latency. The performance loss may instead be
due to the buffer copying.

4.1.4 Parallel Benchmarks.

MG from the NAS Parallel Benchmark [1] (and from
the ParkBench benchmark suite [6]) is a kernel that
uses multigrid to solve a linear system. Figure 4.8
shows the aggregate MFlops/sec for a fixed grid of
size 256 × 256 × 256. Results are given for both an
MPI implementation and a Co-Array Fortran im-
plementation due to Alan Wallcraft. For the two
IBM systems, results are given for both MPI and
OpenMP implementations.

 0

 5000

 10000

 15000

 20000

 2 4 6 8 10 12 14 16

M
fl

o
p

s/
se

c

Processors

NAS Parallel Benchmark MG
 (256x256x256)

Cray X1 (MPI)
Cray X1 (Co-Array)
IBM p690 (MPI)
IBM p690 (OpenMP)
IBM SP [WH II] (MPI)
IBM SP [WH II] (OpenMP)

Figure 4.8: MG: Comparison of Co-Array
Fortran, MPI, and OpenMP performance.

8 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

Due to the nature of the memory access patterns
in the hierarchical multigrid algorithm, MG is typ-
ically very sensitive to latency, both interprocess
and memory. From these data, the X1 perfor-
mance scales reasonably well, with the only signifi-
cant problem at the transition from 4 to 8 processors,
i.e. the transition from using only one SMP node to
using multiple nodes. Co-Array Fortran is not a sig-
nificant performance enhancer for this code, problem
size, and number of processors. While percentage of
peak is only 10-16% on the X1, this code was not
modified to improve vectorization or streaming on
the X1.

4.2 Custom Benchmarks

The following custom benchmarks were developed at
ORNL, and have been used in a number of perfor-
mance studies over the past ten years. As these were
developed on-site, we are able to experiment with
different implementations and to modify them to ex-
amine new performance issues. In the first kernel,
PSTSWM, we describe our experiences in porting
and optimization, look for memory contention, and
compare SSP and MSP performance. The second
kernel, COMMTEST, looks at MPI and SHMEM
message-passing performance in more detail.

PSTSWM. The Parallel Spectral Transform
Shallow Water Model (PSTSWM) [16, 17] represents
an important computational kernel in spectral global
atmospheric models. As 99% of the floating-point
operations are multiply or add, it runs well on sys-
tems optimized for these operations. PSTSWM also
exhibits little reuse of operands as it sweeps through
the field arrays, making significant demands on the
memory subsystem. By these characteristics, the
code should run well on vector systems. However,
PSTSWM is also a parallel code that supports a
large number of different problem sizes and paral-
lel algorithms, and all array dimensions and loop
bounds are determined at runtime. This makes it
difficult for the compiler to identify which loops to
vectorize or stream.

When porting and optimizing PSTSWM on the
X1, five routines were identified as needing modifi-
cation:

• forward complex FFT

• inverse complex FFT

• forward Legendre transform

• inverse Legendre transform

• nonlinear interactions in gridpoint space

All code modifications were local to the specified
subroutines. In particular, no global data structures
were modified. After modification, the new versions
of the Legendre transforms and the nonlinear inter-
actions subroutines still perform reasonably well on
nonvector systems. The same is not true for the
FFT routines, but on most nonvector systems we
use optimized math library routines for these func-
tions. We also examined fixing the vertical prob-
lem dimension at compile-time. In each the above
mentioned routines, two of the three problem dimen-
sions (longitude, latitude, vertical) are available for
vectorization and streaming, one of which is always
the vertical. Specifying the vertical dimension at
compile-time gives the compiler additional informa-
tion for optimization. While this restricts the choice
of domain decomposition and parallel algorithms in
a parallel run, it is not an unreasonable restriction
in many situations.

In a previous evaluation, we also ported
PSTSWM to the NEC SX-6. Optimizing on the SX-
6 led us to modify the same routines. While similar
“vector-friendly” versions of the FFT and nonlinear
interactions routines were used on the SX-6 and the
Cray X1, the code modifications for the Legendre
transform routines were very different for the X1
and the SX-6. On the SX-6, long vectors are the
goal of any restructuring, even if indirection arrays
are then needed due to loop collapsing. Similar tech-
niques are not productive on the X1. Vectors need
not be as long on the X1 as long as there is a loop
to stream over. Also, the scatter-gather hardware
on the X-1 is not efficient for stride-zero or stride-
one scatter-gathers, limiting the utility of collapsing
loops. The X1 modifications were much closer to the
original version of the code.

In the following experiments we examined a num-
ber of different alternatives. The code could be run
in MSP mode (using both vectorization and stream-
ing) or in SSP mode (running on a single SSP and
only exploiting vectorization). As with most com-
pilers, there are a number of different optimization
options, as well as compiler directives to provide ad-
ditional control. We added a small number of di-
rectives to the above mentioned routines to indicate
to the compiler which loops could be vectorized or
streamed. We also looked at two different optimiza-
tion levels, the default (def. opt.) and an aggres-
sive setting (agg. opt.):

-Oaggress,scalar3,vector3,stream3

Early Evaluation of the Cray X1 9

Finally, at runtime you can specify whether to use
64KB pages or 16MB pages. The default is 64KB
pages when running within a single SMP node, and
16MB pages when using multiple nodes. However,
unless noted otherwise, all of the following experi-
ments were run using 16MB pages.

Figures 4.9-4.13 display performance for a num-
ber of different problem sizes: T5L18, T10L18,
T21L18, T42L18, T85L18, and T170L18. The “T”
number defines the horizontal (longitude, latitude)
resolution, while the “L” number refers to the num-
ber of vertical levels. So the problem set varies in
horizontal resolution, but all with 18 vertical levels.
Each problem size requires approximately 4 times as
much memory as the next smaller problem size. For
example, T5 requires approximately 60KB of data
space for each vertical level, while T85 requires ap-
proximately 18MB for each vertical level. The per-
formance is described in terms of MFlops/second.
The floating point operation count was calculated
using an operation count model (which was validated
on an IBM p690), and the computation rate should
be viewed as a consistently weighted inverse time
metric.

Figure 4.9 compares the serial performance when
run on a single MSP.

 0

 1000

 2000

 3000

 4000

 5000

T5 T10 T21 T42 T85 T170

M
F

lo
p

s/
se

co
n

d
/p

ro
ce

ss
o

r

Horizontal Resolution (18 vertical levels)

Performance of Spectral Shallow Water Model on the Cray X1

X1 version of code
 agg. opt., compile-time vertical
 agg. opt.
 def. opt.
 agg. opt., 64KB pages
SX-6 version of code
 agg. opt.
Original Code
 agg. opt.

Figure 4.9: PSTSWM: comparing compiler
options and code modification on the Cray X1

From these results, code modification was crucial for
performance, and the SX-6 modifications were not
appropriate on the X1. The second most impor-
tant performance optimization was the use of 16MB
pages. The default compiler optimizations were as
good as the more aggressive optimizations for this
code. Stipulating the vertical dimension at compile
improved performance for the largest problem sizes.
The advantage of compile-time over runtime speci-
fication is even greater when the number of vertical

levels is smaller.
Figure 4.10 compares the performance when run-

ning on an MSP with running on an SSP, and when
running simultaneously on all processors in an SMP
node. For the MSP experiments, this denotes run-
ning 4 instances of the same problem simultaneously,
while for the SSP experiments, 16 serial instances
are running. We also include performance data for
running 4 serial SSP instances simultaneously. In
this situation, all 4 instances are scheduled on the
same MSP, and this is way of examining contention
between SSPs within the same MSP.

 0

 1000

 2000

 3000

 4000

 5000

T5 T10 T21 T42 T85 T170

M
F

lo
p

s/
se

co
n

d
/p

ro
ce

ss
o

r

Horizontal Resolution (18 vertical levels)

Performance of Spectral Shallow Water Model on the Cray X1

 agg. opt. (1 MSP)
 agg. opt. (4 MSPs)
 agg. opt. (1 SSP)
 agg. opt. (4 SSPs)
 agg. opt. (16 SSPs)

Figure 4.10: PSTSWM: comparing SSP and MSP
performance on the Cray X1

From these results, there is no contention when run-
ning multiple instances of PSTSWM in MSP mode
on an X1 node. (The curves for 1 MSP and 4 MSPs
overlay each other, and are not easily distinguish-
able in the figure.) This is an excellent result, dif-
fering from all other platforms on which we have
run the same experiment. Comparing performance
between runs on single SSPs and MSPs is compli-
cated. MSP performance can suffer from lack of in-
dependent work to exploit with streaming and from
contention for memory bandwidth or cache conflicts
between the 4 SSPs. In contrast, in the single SSP
experiments the other SSPs are idle, and the ac-
tive SSP has sole possession of all shared resources.
In these experiments, MSP performance is twice as
fast as SSP performance for the smallest problem
size, growing to 2.8 times faster for the largest prob-
lem size. When looking at the simultaneous runs,
the 16 simultaneous SSP instances, which do share
resources, show contention. The performance when
running 4 MSP instances is 3.1 to 4.7 times faster
than when running 16 SSP instances. Thus, sim-
ply from a throughput metric, running simultaneous

10 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

MSP jobs is more efficient than running simultane-
ous SSP jobs (for this code) for all but the smallest
problem instances. The 4-instance SSP experiment
has performance closer to that for the single SSP, but
there is still some performance degradation. How-
ever, over half of the performance degradation in
the 16-instance SSP experiment appears to be due
to simple memory contention within the SMP node,
not contention within the MSP.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

T5 T10 T21 T42 T85 T170

A
g

g
re

g
at

e
M

F
lo

p
s/

se
co

n
d

Horizontal Resolution (18 vertical levels)

Performance of Spectral Shallow Water Model on the Cray X1

 agg. opt. (4 MSPs)
 agg. opt. (16 SSPs)
 agg. opt. (4 SSPs)
 agg. opt. (1 MSP)
 agg. opt. (1 SSP)

Figure 4.11: PSTSWM: comparing SSP and MSP
aggregate performance on the Cray X1

Figure 4.11 is an alternative presentation of the same
data, graphing the aggregate computational rate.
Using this view, it is clear that running 4 serial
SSP instances uses the MSP more effectively than
running a single MSP instance (for this code, prob-
lem sizes, and experiment). Despite the memory
intensive nature of the code, the lack of any need
to exploit streaming results in higher efficiency, and
higher throughput. The same is not true when com-
paring running on 4 MSPs with running on 16 SSPs,
i.e. using the entire SMP node. The locality in the
MSP implementation decreases demands on mem-
ory, avoiding contention that limits the SSP perfor-
mance. The comparison of SSP and MSP modes will
always be application and problem size dependent,
and these experiments do not address important is-
sues that arise when comparing parallel MSP and
SSP codes. But these data do indicate some of the
memory contention issues.

Figure 4.12 compares PSTSWM single proces-
sor performance across a number of platforms, using
the best identified compiler optimizations, math li-
braries (when available), and versions of the code,
excepting that all loop bounds are specified at run-
time.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

T5 T10 T21 T42 T85 T170

M
F

lo
p

s
/ s

ec
o

n
d

Horizontal Resolution (with 18 vertical levels)

Performance of Spectral Shallow Water Model

Cray X1 (MSP)
NEC SX-6
Cray X1 (SSP)
IBM p690
Compaq ES45
IBM SP (Nighthawk II)
IBM SP (Winterhawk II)

Figure 4.12: PSTSWM: single processor
cross-platform comparison

The p690 processor (5.2 GFlops/sec peak perfor-
mance) performs reasonably well on this code for
small problem sizes, with performance tailing off
as problem size (and the memory traffic) increases.
As the problem size increases, the vector perfor-
mance increases, and even the performance on a
single SSP (peak performance 3.2 GFlops/sec) ex-
ceeds that of the nonvector systems for problem sizes
larger than T42L18. The SX-6 performance peaks
at 2.6 GFlops/sec and begins decreasing for problem
sizes larger than T42. This occurs because the Leg-
endre transforms dominate the performance for the
large problem sizes, and they are only achieving ap-
proximately 1.5 GFlops/sec on the SX-6. The FFT
routines, which determine performance for the small
problem sizes, achieve over 4 Gflops/sec on the SX-6.
Just the opposite occurs on the X1, where the For-
tran implementations of the FFT routines are only
achieving 2 GFlops/sec while the Legendre trans-
form performance ranges as high as 4.5 GFlops/sec.

Figure 4.13 compares PSTSWM SMP node per-
formance across a number of platforms. As before,
the same problem is solved on all processors in the
SMP node simultaneously. Performance degrada-
tion compared with the single processor performance
indicates contention for shared resources and is one
metric of throughput capability.

Early Evaluation of the Cray X1 11

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

T5 T10 T21 T42 T85 T170

M
F

lo
p

s/
se

co
n

d
/p

ro
ce

ss
o

r

Horizontal Resolution (18 vertical levels)

Performance of Spectral Shallow Water Model

Cray X1 [4 MSPs]
NEC SX-6 [8 procs.]
Cray X1 [16 SSPs]
IBM p690 [32 procs.]
Compaq ES45 [4 procs.]
IBM SP (NHII) [16 procs.]
IBM SP (WHII) [4 procs.]

Figure 4.13: PSTSWM: single SMP node
cross-platform comparison

As noted earlier, the lack of contention in the MSP
runs is unique. All of the other platforms (and
the SSP version of PSTSWM on the X1) demon-
strate some performance degradation when running
the larger problem sizes.

COMMTEST. COMMTEST is a suite of codes
that measure the performance of MPI interproces-
sor communication. COMMTEST differs somewhat
from other MPI benchmark suites in its focus on de-
termining the performance impact of communication
protocol and packet size in the context of “common
usage”. However, the performance we report here
should be similar to that measured using other in-
terprocessor communication benchmarks. SHMEM
performance is also measured in the context of
implementing a simple version of the SWAP and
SENDRECV operators, where message selection is
by source only.

Using COMMTEST, we measured the peak bidi-
rectional SWAP (ping-ping) bandwidth for five ex-
periments:

1) MSP 0 swaps data with MSP 1 (within the
same node)

2) MSP 0 swaps data with MSP 4 (between two
neighboring nodes)

3) MSP 0 swaps data with MSP 8 (between two
more distant nodes)

4) processor i swaps data with processor i+1 for
i = 0, 2, i.e. 2 pairs of processors (0-1, 2-3) in
the same SMP node swap data simultaneously.

5) processor i swaps data with processor i + P/2
for i = 0, . . . , P/2 − 1 for P = 16, i.e. 8 pairs

of processors (0-8, 1-9, ..., 7-16) across 4 SMP
nodes swap data simultaneously.

We measured SWAP bandwidth because the swap
operator is more commonly used in performance crit-
ical interprocessor communication in our application
codes than is the unidirectional send (receive).

The COMMTEST MPI results are displayed in
Figures 4.14-4.15, using log-log and log-linear plots,
respectively. For these experiments, we ran us-
ing 16MB pages. We measured performance us-
ing approximately 40 different implementations of
SWAP using MPI point-to-point commands, in-
cluding block, nonblocking, and synchronous com-
mands, but not persistent commands. Only the
best performance is reported in the graphs. For
most of the experiments, the implementation using
MPI SENDRECV was among the best performers.

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Bidirectional Swap Bandwidth (MPI) on the Cray X1

0-1
0-4
0-8

i-(i+1), i=0,2
i-(i+8), i=0,...,7

Figure 4.14: Log-log plot of MPI bandwidth

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Bidirectional Swap Bandwidth (MPI) on the Cray X1

0-1
0-4
0-8

i-(i+1), i=0,2
i-(i+8), i=0,...,7

Figure 4.15: Log-linear plot of MPI bandwidth

Performance for small messages (length less than 4
KBytes) is similar across all experiments. For larger
messages, performance differs significantly only for

12 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

the 16 processor simultaneous exchange experiment,
where the internode bandwidth must be shared by
all pairs. This saturation test reaches a maximum
bidirectional bandwidth of 6 GB/sec for exchanging
messages of size greater than 256 KB. The other ex-
periments have not achieved maximum bandwidth
by 2MB messages. These same experiments have
also been run with explicitly invalidating the cache
before each timing, and with multiple iterations of
each swap. Neither variant affects the achieved
bandwidth significantly.

Figures 4.16-4.18 graph MPI and SHMEM
SWAP bidirectional bandwidth and MPI and
SHMEM ECHO (ping-pong) unidirectional band-
width for experiment (1), using log-log and log-linear
plots.

 0.1

 1

 10

 100

 1000

 10000

 100000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Communication 0-1 Bandwidth on the Cray X1

SHMEM SWAP
MPI SWAP

SHMEM ECHO
MPI ECHO

Figure 4.16: Log-log intranode bandwidth for 0-1
experiment.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Communication 0-1 Bandwidth on the Cray X1

SHMEM SWAP
MPI SWAP
SHMEM ECHO
MPI ECHO

Figure 4.17: Log-linear intranode bandwidth for
0-1 experiment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 10 100

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Communication 0-1 Bandwidth on the Cray X1

SHMEM SWAP
SHMEM ECHO
MPI SWAP
MPI ECHO

Figure 4.18: Log-linear intranode bandwidth for
0-1 experiment.

From these data, SHMEM SWAP achieves the high-
est bandwidth, and SWAP bidirectional bandwidth
is close to twice the ECHO unidirectional bandwidth
for all but the very largest message sizes. So, nearly
full bidirectional bandwidth is achieveable. SHMEM
SWAP is only 5% better than MPI SWAP for the
largest message sizes, but is over twice as fast for
small and medium message sizes. Note that the
SHMEM echo test suffers a performance problem for
the largest message size. This is consistent across
the other experiments and is repeatable, with this
version of the system software. It did not occur in
experiments run with the previous version of system
software.

Figures 4.19-4.21 graph MPI and SHMEM
SWAP bidirectional bandwidth and MPI and
SHMEM ECHO (ping-pong) unidirectional band-
width for experiment (5), again using both log-log
and log-linear plots.

 0.1

 1

 10

 100

 1000

 10000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Communication (i:i+7) Bandwidth on the Cray X1

SHMEM SWAP
SHMEM ECHO

MPI SWAP
MPI ECHO

Figure 4.19: Log-log internode bandwidth for 8
simultaneous pairs experiment.

Early Evaluation of the Cray X1 13

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1 10 100 1000 10000 100000 1e+06 1e+07

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Communication (i:i+7) Bandwidth on the Cray X1

SHMEM SWAP
SHMEM ECHO
MPI SWAP
MPI ECHO

Figure 4.20: Log-linear internode bandwidth for 8
simultaneous pairs experiment.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 100

M
B

yt
es

/s
ec

o
n

d

Amount of Data Sent Each Direction

Communication (i:i+7) Bandwidth on the Cray X1

SHMEM SWAP
SHMEM ECHO
MPI SWAP
MPI ECHO

Figure 4.21: Log-linear internode bandwidth for 8
simultaneous pairs experiment.

These data are qualitatively very similar to those
from the previous experiment. SHMEM SWAP
is again the best performer, and SHMEM ECHO
again has a performance problem for large mes-
sages. For small messages, the SWAP bandwidth
is nearly twice that of the ECHO bandwidth. How-
ever, once SWAP bandwidth saturates the network,
ECHO bandwidth continues to grow until the two
are nearly equal. For the most part, MPI and
SHMEM message-passing performance for the opti-
mal protocols are smooth functions of message size.

4.3 Application Performance

POP. POP has previously been ported to the
Earth Simulator, where restructuring improved the
vectorization of the baroclinic process. Cray also
has a port of POP, one that uses co-array Fortran
to minimize the interprocessor communication over-
head of the barotropic process. These two codes

have similar performance, but represent orthogonal
optimizations. A merger is currently being investi-
gated, and preliminary results for the merged code
are described here.

Figure 4.22 compares performance when using
64KB and 64MB pages, as well as performance data
for the unmodified Earth Simulator versions and one
timing using the original version of POP. The met-
ric here is the number of years of simulation that
can be computed in one day of compute time, i.e., a
weighting of inverse time. The problem is a bench-
mark specified by the authors of the code that uses a
grid with one degree horizontal resolution, referred
to as the “by one”, or x1, benchmark. The code was
compiled with the default optimization level, which,
as with PSTSWM, was as effective as more aggres-
sive compiler optimizations.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 5 10 15 20 25 30

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

LANL Parallel Ocean Program on the Cray X1
 POP 1.4.3, x1 benchmark

Modified Earth Simulator Code
 16MB page
 64KB page

Earth Simulator Code
 16MB page

Original Code
 16MB page

Figure 4.22: POP: X1 performance results

These data indicate that page size does not impact
performance for POP. (The curves for using 16MB
and 64KB pages overlap, and are difficult to distin-
guish in this figure.) Given the earlier PSTSWM
results, it is safest to use 16MB pages sizes. The
original version of the code again shows poor per-
formance. The Earth Simulator version of the code
performs reasonably well. The primary difference
between the merged code and the Earth Simulator
version is the use of Co-Array Fortran to implement
the conjugate gradient algorithm, an algorithm that
is very sensitive to message-passing latency.

Figures 4.23-4.25 compare the performance of
POP on the X1 with performance on other systems.
The first figure again plots the years per day met-
ric. The other figures plot the seconds per simulation
day spent in the baroclinic and barotropic processes,
respectively.

14 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

 10

 20

 30

 40

 50

 5 10 15 20 25 30

S
im

u
la

ti
o

n
 Y

ea
rs

 p
er

 D
ay

Processors

LANL Parallel Ocean Program
 POP 1.4.3, x1 benchmark

Earth Simulator
Cray X1
IBM p690 cluster
HP AlphaServer SC
SGI Origin3000
IBM SP (NH II)
IBM SP (WH II)

Figure 4.23: POP: cross-platform performance
comparison

 1

 4

 16

 64

 256

 1024

 4096

 16384

 1 2 4 8 16 32

S
ec

o
n

d
s

p
er

 S
im

u
la

ti
o

n
 D

ay

Processors

POP Baroclinic Timings

Earth Simulator
Cray X1

IBM p690 cluster
HP AlphaServer SC

IBM SP (NH II)
IBM SP (WH II)

SGI Origin3000

Figure 4.24: POP: baroclinic performance

 0.5

 1

 2

 4

 8

 16

 32

 64

 128

 256

 1 2 4 8 16 32

S
ec

o
n

d
s

p
er

 S
im

u
la

ti
o

n
 D

ay

Processors

POP Barotropic Timings

Cray X1
Earth Simulator

IBM p690 cluster
HP AlphaServer SC

IBM SP (NH II)
IBM SP (WH II)

SGI Origin3000

Figure 4.25: POP: barotropic performance

From these data, POP on the X1 performs well
compared to the nonvector systems, but still lags
slightly behind the performance on the Earth Sim-
ulator. The time spent in the baroclinic process is

nearly identical on the Earth Simulator and the X1.
Performance is better in the barotropic process on
the X1 than on the Earth Simulator, primarily due
to the use of Co-Array Fortran in the conjugate gra-
dient solver. Much of the X1 version of POP is still
identical to the Earth Simulator version, there is ev-
ery indication that X1 performance can be improved.

5 Conclusions

In this very early evaluation of the X1, excellent per-
formance was observed with some of the standard
computational benchmarks. Very poor performance
was also observed, and it is clear that some tuning
will be required of any code that is ported to the sys-
tem, including vector codes that were designed for
traditional vector systems. However, when care is
taken to optimize the codes, performance has been
excellent when compared to the nonvector systems.

The memory bandwidth in the SMP node is ex-
cellent, and both SHMEM and Co-Array Fortran
provide significant performance enhancements for
codes whose performance is sensitive to latency. It
is unfortunate that this is required, and we hope
that MPI small-message performance can yet be im-
proved. However, MPI large message performance
is very good. With regard to SSP and MSP mode,
both approaches work. Which is best for a given ap-
plication is too sensitive to the application, problem
size, and number of processors to make any definitive
statements. For a fixed size problem, it is typically
best to use fewer, more powerful processors (MSPs),
in order to minimize parallel overhead. On the Cray
X1, this can be offset by inefficiencies in using the
SSPs in an MSP, i.e., streaming overhead or ineffi-
ciency. In our limited experience, the compilers are
quite effective at identifying and exploiting multi-
streaming, and coding for vectorization and stream-
ing is often easier than for vectorization alone.

6 Acknowledgements

The NEC SX-6 version of POP and POP perfor-
mance data on the Earth Simulator were provided
by Dr. Yoshikatsu Yoshida of the Central Research
Institute of Electric Power Industry. The modi-
fication to POP using Co-Array Fortran was pro-
vided by John Levesque of Cray. POP performance
data for the SGI Origin3000 were provided by Dr.
Phillip Jones of Los Alamos National Laboratory.
POP performance data for the IBM SP at the Na-
tional Energy Research Scientific Computing Center

Early Evaluation of the Cray X1 15

(NERSC) were provided by Dr. Tushar Mohan of
NERSC. We also gratefully acknowledge the follow-
ing institutions for access to their HPC systems:

• the Pittsburgh Supercomputing Center for ac-
cess to the Compaq AlphaServer SC at PSC,

• the Center for Computational Sciences at
ORNL for access to the IBM p690, IBM SP,
and Cray X1 at ORNL, and

• the National Energy Research Scientific Com-
puting Center for access to the IBM SP at
NERSC.

7 About the Authors

Tom Dunigan is a Senior Research Scientist in the
Computer Science and Mathematics Division at Oak
Ridge National Laboratory. He has been conduct-
ing early evaluations of advanced computer archi-
tectures since the mid 80’s. When not testing new
computer systems, he is investigating protocols for
high-speed networks. He can be reached at the above
US mail address or E-mail: thd@ornl.gov.

Pat Worley is a Senior Research Scientist in
the Computer Science and Mathematics Division at
Oak Ridge National Laboratory. He has been con-
ducting early evaluations of advanced computer ar-
chitectures since the early 90’s. He also does re-
search in performance evaluation tools and method-
ologies, and designs and implements parallel algo-
rithms in climate and weather models. He can be
reached at the above US mail address or E-mail:
worleyph@ornl.gov.

References

[1] D. H. Bailey, T. Harris, R. F. V. der
Wijngaart, W. Saphir, A. Woo, and
M. Yarrow, The NAS Parallel Benchmarks
2.0, Tech. Rep. NAS-95-010, NASA Ames Re-
search Center, Moffett Field, CA, 1995.

[2] M. B. Blackmon, B. Boville, F. Bryan,
R. Dickinson, P. Gent, J. Kiehl,
R. Moritz, D. Randall, J. Shukla,
S. Solomon, G. Bonan, S. Doney,
I. Fung, J. Hack, E. Hunke, and J. Hur-
rel, The Community Climate System Model,
BAMS, 82 (2001), pp. 2357–2376.

[3] W. W. Carlson, J. M. Draper, D. E.
Culler, K. Yelick, E. Brooks, and

K. Warren, Introduction to UPC and lan-
guage specification, Technical Report CCS-TR-
99-157, Center for Computing Sciences, 17100
Science Dr., Bowie, MD 20715, May 1999.

[4] J. Dongarra, J. D. Croz, I. Duff, and
S. Hammarling, A set of level 3 basic linear
algebra subprograms, ACM Trans. Math. Soft-
ware, 16 (1990), pp. 1–17.

[5] K. Feind, Shared Memory Access (SHMEM)
Routines, in CUG 1995 Spring Proceedings, R.
Winget and K. Winget, ed., Eagen, MN, 1995,
Cray User Group, Inc., pp. 303–308.

[6] R. Hockney and M. B. (Eds.), Public in-
ternational benchmarks for parallel computers,
parkbench committee report-1, Scientific Pro-
gramming, 3 (1994), pp. 101–146.

[7] P. W. Jones, The Los Alamos Parallel Ocean
Program (POP) and coupled model on MPP
and clustered SMP computers, in Making its
Mark – The Use of Parallel Processors in Mete-
orology: Proceedings of the Seventh ECMWF
Workshop on Use of Parallel Processors in Me-
teorology, G.-R. Hoffman and N. Kreitz, eds.,
World Scientific Publishing Co. Pte. Ltd., Sin-
gapore, 1999.

[8] J. D. McCalpin, Memory Bandwidth
and Machine Balance in Current High
Performance Computers, IEEE Computer
Society Technical Committee on Com-
puter Architecture Newsletter, (1995).
http://tab.computer.org/tcca/news/dec95/dec95.htm.

[9] MPI Committee, MPI: a message-passing in-
terface standard, Internat. J. Supercomputer
Applications, 8 (1994), pp. 165–416.

[10] J. Nieplocha, R. J. Harrison, and R. J.
Littlefield, Global Arrays: A portable
‘shared-memory’ programming model for dis-
tributed memory computers, in Proceedings of
Supercomputing ’94, Los Alamitos, CA, 1994,
IEEE Computer Society Press, pp. 340–349.

[11] R. W. Numrich and J. K. Reid, Co-Array
Fortran for parallel programming, ACM Fortran
Forum, 17 (1998), pp. 1–31.

[12] OpenMP Architecture Review Board,
OpenMP: A proposed standard api for
shared memory programming. (available
from http://www.openmp.org/openmp/mp-
documents/paper/paper.ps), October 1997.

16 Proceedings of the 45th Cray User Group Conference, May 12-16, 2003

[13] J. R. Taft, Achieving 60 GFLOP/s on the
production CFD code OVERFLOW-MLP, Par-
allel Computing, 27 (2001), pp. 521–536.

[14] A. J. van der Steen, The benchmark of the
EuroBen group, Parallel Computing, 17 (1991),
pp. 1211–1221.

[15] A. J. Wallcraft, SPMD OpenMP vs MPI
for Ocean Models, in Proceedings of the
First European Workshop on OpenMP,
Lund, Sweden, 1999, Lund University.
http://www.it.lth.se/ewomp99.

[16] P. H. Worley and I. T. Foster, PSTSWM:
a parallel algorithm testbed and benchmark code
for spectral general circulation models, Tech.
Rep. ORNL/TM–12393, Oak Ridge National
Laboratory, Oak Ridge, TN, (in preparation).

[17] P. H. Worley and B. Toonen, A users’
guide to PSTSWM, Tech. Rep. ORNL/TM–
12779, Oak Ridge National Laboratory, Oak
Ridge, TN, July 1995.

