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I . INTRODUCTION

Studiesof theInternet traffic at thelevel of network prefixes,
fixedlengthprefixes,TCPflows,AS’s,andWWW traffic, have
all shown thata very small percentageof theflows carriesthe
largest partof the information.This behavior is commonly re-
ferredto as“the elephants andmicephenomenon”.

Traffic engineering applications, suchas re-routing or load
balancing,couldexploit thispropertyby treatingelephant flows
differently. In this context, though, elephants shouldnot only
contributesignificantlyto theoverall load,butalsoexhibit suffi-
cientpersistencein time. Thechallengeis to beableto examine
a flow’s bandwidth andclassifyit asanelephantbasedon the
datacollectedacrossall theflows on a link. In this paper, we
presentaclassificationschemethatis basedonthedefinitionof
aseparation threshold, thatelephantshaveto exceed. We intro-
ducetwo single-featureclassificationschemes,andshow that
the resultingelephantsare highly volatile. We then propose
a two-featureclassificationschemethat incorporatestemporal
characteristicsandshow thatthisapproachis moresuccessfulin
isolatingelephantsthatexhibit consistency - thusmaking them
moreattractive for traffic engineeringapplications1.

I I . METHODOLOGY

We usepacket tracesandBGP tablescollectedin the core
of theSprint’s Tier-1 IP backbonenetwork. We presentresults
from two different OC-12links, from onePoPon theeastand
the west coastof the USA respectively2. The links usedare
two hopsaway from the periphery of the network, andtraffic
is capturedon its way towards the core. Therefore, traffic to-
wardsspecificdestinations shouldexhibit a sufficient level of
aggregation.

Sinceour intended applicationis intra-domain traffic engi-
neering, we choseasthe flow granularity the oneof the BGP
destinationnetwork prefix. Our methodology focuseson the
identificationof thoseflows that contribute high volumes of
traffic consistentlyover time. Let

�
denotethe index of a net-

work prefix flow, i.e., a BGProuting tableentry. Let � denote
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�
A full versionof thepapercanbefoundin [2].�
Similar resultshave beenobtainedon otherOC-12andOC-48links.

the length of the time interval over which measurements are
taken.Timeis discretizedinto theseintervals,and� is theindex
of time intervals. Wedefine�	��
���
 to betheaveragebandwidth
of thetraffic destinedto aparticularnetwork prefix

�
during the

����� timeslotof length � . We use5 minutes asourdefaultmea-
surement interval. Similar resultswereobtainedfor ����� min,
and ������� mins.

SingleFeature ClassificationOur methodology consistsof
two phases:1) thresholddetectionphase,and2) thresholdup-
datephase.In thefirst phase,we calculatea bandwidth value� 
���
 that separatesthe high volumeflows at interval � . This
value � 
���
 is likely to changewith time alwaysisolatingthose
flows thatcontributethehighestamount of informationin each
time interval. In order to usethis threshold to detectelephants
in the next interval ����� we calculatea new thresholdvalue�� 
�� �!�"
 , according to

�� 
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We found thatavalueof )0�1�2.43 leadsto asufficiently smooth�� 
��#�!�"
 .

We propose two different techniques to identify the initial
threshold value,namelythe “aest” andthe “ 5 -constantload”
approach. The “aest” approachtakes into account the heavy-
tail nature of the flow-bandwidthdistribution, as observed in
thecollecteddata. It setsthethresholdvaluein sucha way so
thataflow is characterizedasanelephant,only if it is locatedin
the tail of theflow bandwidth distribution. Using the aest test
[1] we identify the points in the flow bandwidth distribution
thatfollow apower-law, andweset � 
���
 equal to thefirst point
after which suchbehavior canbe witnessed.The “ 5 -constant
load” technique requires the settingof an input parameter 5
corresponding to the fraction of total traffic we would like to
placein theelephantclass.Thethresholdis setin sucha way
thatall theflowsexceedingit account for thechosenfractionof
total traffic. For more detailspleasereferto [2].

The lengthof time that an elephant remains an elephant is
both a function of the flow itself andof the classification. It
is a functionof the classificationin the sensethat a particular
high-volumeflow will remainin the elephantclassaslong as
thecontinually adjustingthresholdstayslower that its average
bandwidth. Note that the classificationschemeproposedin-
duces thefollowing underlyingtwo-stateprocessoneachflow;6 � 
���
7�8� if

�:9-;(<
(elephant class),and

6 � 
���
=�%� if
�79-;?>

(mouseclass).At eachclassificationtime interval, theprocess
eithertransitions to theotherstateor staysin thesamestate.

Basedon this process
6 � 
���
 , we computefor each

�
theaver-

ageholding time in theelephantstateduring thefivehour busy
period. Our resultsindicatethat elephant flows maintaintheir
statefor surprisingly shortperiodsof time; their average hold-
ing time is 20-40 minutes.Moreover, morethan1000flows in
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(a) Number of elephantsfor “aest” and “0.8-constant
load” combinedwith “latent heat”.

(b) Fractionof total traffic apportionedto elephantsfor
thetwo schemes.

(c) Averageholding times in the elephantstate (in 5
minuteintervals).

Fig. 1. Elephant statisticsfor two-featureclassificationscheme.

eachlink becomeelephantsfor justa singleinterval.
Two Feature Classification Short-lived elephantflows are

due to low-volume flows burstingbeyond the threshold
�� 
���


for small periods of time. In order to allow flows to expe-
rienceshort-term transitionsacrossthe thresholdwe definea
new metric, which we call “latent heat”. At eachtime inter-
val we calculatethedistancebetweenthebandwidth achieved
by a flow andthecorrespondingthreshold value,derivedusing
the proposedapproaches“aest”, andthe “constant load”. We
definethe“latent heat”of a flow asthesumof thosedistances
in the past12 timeslots,i.e. the previous hour. @BAC��
���
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ON thusincorporating aflow’spersistence
in timeasasecondfeature.In eachclassificationinterval �=�0� ,
if @BA � 
���
?PQ� , �R9�;(< , otherwise
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.

The“latentheat”metrictakesinto accounthow muchabove
or below the thresholda flow hasbeentransmittingthrough
time andreactsto transientmoves above/below

�� 
���
 with suf-
ficient latency. As a result, short transientburstsor dips are
filteredavoidingunnecessaryreclassificationof flows.

I I I . RESULTS

Our classificationapproachleadsto a small number of ele-
phant flows, accounting for a substantialamount of theoverall
traffic, while exhibiting sufficient persistencein time. Results
arepresented for both links andfor bothschemesin Figure1.
Recall that under the “0.8-constantload” scheme,� 
���
 is se-
lectedsothat80%of thetotal traffic is apportionedto elephant
flows. Underthe “aest” scheme,� 
���
 is selectedasa cut-off
point in theflow bandwidth distribution.

Figure 1(a) presentsthe number of elephants identified at
eachtime interval. The westcoastlink correspondsto a link
experiencinga high burst in its utilization during the working
hours. The eastcoastlink exhibits smootherutilization levels
during theday. As aconsequence,thenumberof identifiedele-
phants for the west coastlink underboth schemesexhibits a
similar burstduring theworking hours. For theeastcoastlink,
thenumber of identifiedelephants evolvesin a smoother fash-
ion during theday. Theaveragenumberof elephants is 600for
thewestcoastlink, and500for theeastcoastlink.

Thefraction of traffic apportionedto elephants for bothlinks
andunderbothschemesexhibits lessfluctuation andis approx-
imately0.6 (Figure 1(b)). Even though the targetof the “0.8-

constant load” schemeis to classifyelephantsso that they ac-
count for 80%of thetotaltraffic, incorporatingthe“latentheat”
metricleadsto asmallerelephant load,sinceflowsclassifiedas
elephantsduring theinitial classificationstepturnout to exhibit
insufficient persistencein time.

Indeedafter incorporatingthe“latent heat”metric,theaver-
ageholding timeof anelephant flow increasestoapproximately
2 hours, while the number of flows classifiedaselephantsfor
oneintervaldramaticallydecreasestoapproximately50(Figure
1(c)). We believe thatclassificationschemessuchasthis one,
thatavoid reclassificationfor short-termfluctuations,identifies
the typeof long-lived elephant flows that aregood candidates
for traffic engineering applications.

Initial observationson thecharacteristicsof elephants reveal
that they correspondto networks with prefix lengths between
/12and/26,belonging to otherTier- � ISPproviders.Although
100 /8 networks becameactive during the day, only threere-
ceivedtraffic at a ratesufficiently highto placethemin theele-
phant class. Therefore, thereis little correlation betweenthe
sizeof a network prefixandits ability to actasanelephant.

IV. CONCLUSIONS

The idea of isolatingelephants for traffic engineeringpur-
poseshasbeenwidely proposed,but therehasbeenno prior
effort on assessingthe feasibility andissuesinvolved in doing
so. We proposea way to define“elephant” flows within a traf-
fic engineeringcontext. According to the proposeddefinition
flows arecharacterizedas“elephants” basedon boththeir vol-
umeandtheir persistencein time. We show that while single
feature classificationschemesareattractive in their simplicity,
they areinsufficient for mosttraffic engineeringapplications,in
that they leadto short-livedelephant flows. We show thatour
“latent heat” classificationschemeis capableof detectingele-
phants characterized by the desiredproperties. Nevertheless,
we concludethat identifying elephants imposeschallengesde-
spitetheirheavy-hitternature.
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