
CONGESTION AVOIDANCE IN COMPUTER NETWORKS

WITH A CONNECTIONLESS NETWORK LAYER

PART I: CONCEPTS, GOALS AND METHODOLOGY

Raj Jain, K. K. Ramakrishnan
Digital Equipment Corporation
550 King Street (LKG 1-2/A19)

Littleton, MA 01460

ABSTRACT

Congestion is said to occur in the network when the resource demands exceed the capacity
and packets are lost due to too much queuing in the network. During congestion, the network
throughput may drop to zero and the path delay may become very high. A congestion control
scheme helps the network to recover from the congestion state.

A congestion avoidance scheme allows a network to operate in the region of low delay and high
throughput. Such schemes prevent a network from entering the congested state. Congestion
avoidance is a prevention mechanism while congestion control is a recovery mechanism.

We compare the concept of congestion avoidance with that of ow control and congestion
control. A number of possible alternative for congestion avoidance have been identi�ed.
From these a few were selected for study. The criteria for selection and goals for these
schemes have been described. In particular, we wanted the scheme to be globally e�cient,
fair, dynamic, convergent, robust, distributed, con�guration independent, etc. These goals
and the test cases used to verify whether a particular scheme has met the goals have been
described.

We model the network and the user policies for congestion avoidance as a feedback con-
trol system. The key components of a generic congestion avoidance scheme are: congestion
detection, congestion feedback, feedback selector, signal �lter, decision function, and in-
crease/decrease algorithms. These components have been explained.

The congestion avoidance research was done using a combination of analytical modeling and
simulation techniques. The features of simulation model used have been described. This
is the �rst report in a series on congestion avoidance schemes. Other reports in this series
describe the application of these ideas leading to the development of speci�c congestion
avoidance schemes.

Version: September 2, 1998

1

1 INTRODUCTION

Recent technological advances in computer networks have resulted in a signi�cant increase
in the bandwidth of computer network links. The ARPAnet was designed in the 1970s using
leased telephone lines having a bandwidth of 50 Kbits/second. In the 1980s, local area
networks (LAN) such as Ethernet and Token rings have been introduced with a bandwidth
in the range of 10 Mbits/second. In this second half of the same decade, e�orts are underway
to standardize �ber optic LANs with a bandwidth of 100 Mbits/second and higher.

The steadily increasing bandwidth of computer networks would lead one to believe that
network congestion is a problem of the past. In fact, most network designers have found the
opposite to be true. Congestion control has been receiving increased attention lately due
to an increasing speed mismatch caused by the variety of links that compose a computer
network today. Congestion occurs mainly at routers (intermediate nodes, gateways, or IMPs)
and links in the network where the rate of incoming tra�c exceeds the bandwidth of the
receiving node or link.

The problem of congestion control is more di�cult to handle in networks with connectionless
protocols than in those with connection-oriented protocols. In connection-oriented networks,
resources in the network are reserved in advance during connection setup. Thus, one easy
way to control congestion is to prevent new connections from starting up if congestion is
sensed [1]. The disadvantage of this approach, like any other reservation scheme, is that
reserved resources may not be used and may be left idle even when other users have been
denied permission. Rather than get in to the religious debate between followers of the
connection-oriented and connectionless disciplines, we simply want to point out the fact
that the problem of congestion control in connectionless protocols is more complex. It is this
set of protocols that we are concerned with here.

We are concerned with congestion avoidance rather than congestion control. The distinction
between these two terms is a rather subtle one. Briey, a congestion avoidance scheme
allows a network to operate in the region of low delay and high throughput. These schemes
prevent a network from entering the congested state in which the packets are lost. We will
elaborate on this point in the next section where the terms ow control, congestion control,
and congestion avoidance have been de�ned and their relationship to each other has been
discussed.

We studied a number of alternative congestion avoidance shemes. This is the �rst report
in a series about our work in this area. In this report, we discuss the goals, the metrics
used to quantify the performance, and the fundamental components involved in the design
of any congestion avoidance scheme. We address the issue of fairness in the service o�ered
by a network. The role of algorithms for increase/decrease of the amount of tra�c a user
may place on the network is discussed, as well as the impact of the fairness of a range of

2

increase/decrease algorithms. We also describe the simulation tools and the test sequences
that we used to study alternative congestion avoidance schemes. These apply to all conges-
tion avoidance schemes that we studied. Individual schemes will be described separately in
other reports in this series.

The organization of this report is as follows. In section 2 we de�ne the concepts of ow
control, congestion control, and congestion avoidance. We discuss the distinction between
these terms and show that the problem of congestion can not be solved simply by increasing
memory size or increasing link bandwidth. Section 3 describes the requirements for an ideal
congestion avoidance scheme. Section 4 lists a number of alternative schemes for congestion
avoidance. From this list, we selected a few schemes for detailed study. The criterion for
selection are described. Section 5 de�nes a number of performance metrics that were used to
de�ne optimality. Section 6 lists the goals that we set for the design of the schemes. Most of
these goals are quantitative and veri�able. Section 7 describes the components of a generic
congestion avoidance scheme in the framework of a control system. This helps in a systematic
design of the scheme in that most components can be designed in isolation. Two component
algorithms that are common to all schemes are window increase/decrease algorithms and
window update frequency. These are described in sections 8 and 9, respectively. Finally, we
describe the simulation model in section 10 and the test sequences used to verify the goals
in section 11.

The next report in this series [19] describes a binary feedback congestion avoidance scheme.

2 CONCEPTS

In this section we de�ne the basic concepts of ow control, congestion control, and congestion
avoidance. These three concepts are related but distinct. They are related because all three
solve the problem of resource management in the network. They are distinct because they
solve resource problems either in di�erent parts of the network or in a di�erent manner. We
also point out how decreasing cost of memory, or increasing link bandwidth and processor
speed are not su�cient to solve these problems.

2.1 FLOW CONTROL

Consider the simple con�guration shown in Figure 1a in which two nodes are directly con-
nected via a link. Without any control, the source may send packets at a pace too fast for
the destination. This may cause bu�er overow at the destination leading to packet losses,
retransmissions, and degraded performance. A ow control scheme protects the destination
from being ooded by the source.

3

Some of the schemes that have been described in the literature are window ow-control,
Xon/Xo� [7], rate ow-control [5], etc. In the window ow-control scheme, the destina-
tion speci�es a limit on the number of packets that the source may send without further
permission from the destination. The permission may be an explicit message or it may be
implicit in that an arriving acknowledgment may permit the source to send additional pack-
ets. The Xon/Xo� scheme is a special case of window ow-control in which the window is
either in�nity (Xon) or zero (Xo�). In the rate ow-control schemes, the destination speci-
�es a maximum rate (packets per second or bits per second) at which the source may send
information.

2.2 CONGESTION CONTROL

Now let us extend the con�guration to include a network 1 (see Figure 1b) consisting of
routers and links that have limited memory, bandwidth, and processing speeds. Now the
source must not only obey the directives from the destination, but also from all the routers
and links in the network. Without this additional control the source may send packets at a
pace too fast for the network, leading to queuing, bu�er overow, packet losses, retransmis-
sions, and performance degradation.

A congestion control scheme protects the network from being ooded by its users (source

1In most of the discussion on congestion, we use the term network to mean only the communication

subnet not including the end nodes (called users).

4

and/or destination). 2

In connection-oriented networks the congestion problem is generally solved by reserving the
resources at all routers during connection setup. In connectionless networks it can be done
by explicit messages (choke packets) from the network to the sources [16], or by implicit
means such as timeout on a packet loss. Jain [14] and Ramakrishnan [18] have discussed a
number of schemes for congestion control and analyzed a timeout-based scheme in detail.

2.3 FLOW CONTROL vs CONGESTION CONTROL

It is clear from the above discussion that the terms ow control and congestion control are
distinct. Flow control is an agreement between a source and a destination to limit the ow of
packets without taking into account the load on the network. The purpose of ow control is
to ensure that a packet arriving at a destination will �nd a bu�er there. Congestion control
is primarily concerned with controlling the tra�c to reduce overload on the network. Flow
control solves the problem of the destination resources being the bottleneck while congestion
control solves the problem of the routers and links being the bottleneck. Flow control is
bipartite agreement. Congestion control is a social (network-wide) law. Di�erent connections
on a network can choose di�erent ow control strategies, but nodes on the network should
follow the same congestion control strategy, if it is to be useful. The two parties in ow
control are generally interested in cooperating whereas the n parties (e.g., di�erent users) in
congestion control may be noncooperative. Fairness is not an issue for the two cooperating
parties whereas it is an important issue for n competing parties.

It should be noted that there is considerable disagreement among researchers regarding the
de�nitions of ow and congestion control. Some authors [7] consider congestion control to
be a special case of ow control, while others [20] distinguish them as above.

2.4 CONGESTION AVOIDANCE

Traditional congestion control schemes help improve the performance after congestion has
occurred. Figure 2 shows hypothetical graphs of response time and throughput of a network
as the network load increases. If the load is small, throughput generally keeps up with
the load. As the load increases, throughput increases. After the load reaches the network
capacity, throughput stops increasing. If the load is increased any further, the queues start
building, potentially resulting in packets being dropped. The throughput may suddenly drop
when the load increases beyond this point and the network is said to be congested. The

2We use the term user to denote source or destination transport entity. Either one could take action to

limit the load on the network.

5

Figure 2: Network performance as a function of the load. Broken curves indicate perfor-
mance with deterministic service and inter-arrival times.

response time curve follows a similar pattern. At �rst the response time increases little with
load. When the queues start building up, the response time increases linearly until �nally,
as the queues start overowing, the response time increases drastically.

The point at which throughput approaches zero is called the point of congestion collapse.
This is also the point at which the response time approaches in�nity. The purpose of a
congestion control scheme [14, 3] is to detect the fact that the network has reached the point
of congestion collapse resulting in packet losses and to reduce the load so the network can
return to an uncongested state.

We call the point of congestion collapse a cli� due the fact that the throughput falls o�
rapidly after this point. If the goal of the network design is to maximize throughput while
also minimizing response time, then the knee is a better operating point as shown in Figure
2. This is the point after which the increase in the throughput is small, but a signi�cant
increase in the response time results. Figure 2 also shows a plot of power [8] as a function

6

of the load. Power is de�ned as the ratio of throughput to response time. The peak of the
power curve occurs at the knee. We will discuss more about the use of power later under
performance metrics.

A scheme that allows the network to operate at the knee is called a congestion avoidance
scheme as distinguished from a congestion control scheme which tries to keep the network
to the left of the cli�. A properly designed congestion avoidance scheme will ensure that the
users are encouraged to increase their load as long as this does not signi�cantly a�ect the
response time and are encouraged to decrease it if that happens. Thus, the network oscillates
around the knee and congestion never occurs. However, the congestion control schemes are
still required to protect the network should it reach the cli� due to transient changes in the
network.

2.5 CONGESTION AVOIDANCE vs CONGESTION CONTROL

The distinction between congestion control and congestion avoidance is similar to that be-
tween deadlock recovery and deadlock avoidance. Congestion control procedures are cures
and the avoidance procedures are preventive in nature. A congestion control scheme tries to
bring the network back to an operating state, while a congestion avoidance scheme tries to
keep the network at an optimal state. Without congestion control a network may cease oper-
ating (zero throughput) whereas networks have been operating without congestion avoidance
for a long time. The point at which a congestion control scheme is called upon depends on
the amount of memory available in the routers, whereas, the point at which a congestion
avoidance scheme is invoked, is independent of the memory size. A congestion avoidance
scheme may continuously oscillate slightly around its goal (knee) without signi�cant degra-
dation in performance, whereas, a congestion control scheme tries to minimize the chances
of going above the limit (cli�).

3 DESIGN REQUIREMENTS

Before we discuss the various schemes for congestion avoidance and compare them it is
helpful to point out some of the design requirements that we followed. These requirements
helped us limit the number of schemes for further study. The key requirements are: no control
during normal operation, no extra packets, a connectionless network layer, and con�guration
independence. We describe these requirements below.

7

3.1 NO CONTROL DURING NORMAL OPERATION

Congestion is a transient phenomenon. Networks are con�gured in such a way that, on an
average, the network is not overloaded. We therefore refrained from schemes that would
generate extra overhead during normal (underloaded) conditions. This ruled out the use of
such techniques as sending encouragement packets to users during underload and indicating
overload by the absence of these packets.

3.2 NO NEW PACKETS

The processing overhead for network services depends upon the number of packets and the
size of those packets. Performance measurements of existing implementations have shown
that the number of packets a�ects the overhead much more than the size. Short acknowl-
edgment messages cost as much as 50% of the long data messages. This is why piggybacking
(combining two are more messages) helps reduce the overhead.

In summary, adding an extra packet causes much more overhead than adding a few bits in
the header. We therefore preferred schemes that did not require generation of new messages
and concentrated instead on adding only a few bits in the header.

3.3 DISTRIBUTED CONTROL

The scheme must be distributed and work without any central observer. Thus, schemes where
all routers send congestion information to a central network control center were considered
unacceptable.

3.4 CONNECTIONLESS NETWORK LAYER

The key architectural assumption about the networks is that they use connectionless network
service and transport level connections. By this we mean that a router is not aware of the
transport connections passing through it, and the transport entities are not aware of the
path used by their packets. There is no prior reservation of resources at routers before an
entity sets up a connection. The routers cannot compute the resource demands except by
observing the tra�c owing through them.

Examples of network architectures with a connectionless network layer are DoD TCP/IP,
Digital Network Architecture (DNA) [6], and ISO Connectionless Network Service used with

8

ISO Transport Class 4 [9].

4 CONGESTION AVOIDANCE SCHEMES

Congestion control and congestion avoidance are dynamic system control issues. Like all
other control schemes they consist of two parts: a feedback mechanism and a control mech-
anism. The feedback mechanism allows the system (network) to inform the users (source or
destination) of the current state of the system. The control mechanism allows the users to
adjust their load on the system. The feedback signal in a congestion avoidance scheme tells
the users whether the network is operating below or above the knee. The feedback signal in
a congestion control scheme tells the users whether the network is operating below or above
the cli�.

The problem of congestion control has been discussed extensively in literature. A number
of feedback mechanisms have been proposed. If we extend those mechanisms to signal
operations around the knee rather than the cli�, we obtain a congestion avoidance scheme.
Of course, the control mechanism will also have to be adjusted to help the network operate
around the knee rather than the cli�. For the feedback mechanisms we have the following
alternatives:

1. Congestion feedback via packets sent from routers to sources.

2. Feedback included in the routing messages exchanged among routers.

3. End-to-end probe packets sent by sources.

4. Each packet contains a congestion feedback �eld that is �lled in by routers in packets
going in the reverse direction.

5. A congestion feedback �eld is �lled in by routers in packets going in the forward
direction.

The �rst alternative is popularly known as choke packet [16] or source quench message in
ARPAnet [17]. It requires introducing additional tra�c in the network during congestion,
which may not be desirable. A complement to this scheme is that of encouraging sources to
increase the load during underload. The absence of these encouragement messages signals
overload. This scheme does not introduce additional tra�c during congestion. Nevertheless,
it does introduce control overhead on the network even if there is no problem.

The second alternative, increasing the cost (used in the forwarding database update algo-
rithm) of congested paths, has been tried before in ARPAnet's delay-sensitive routing. The

9

delays were found to vary too quickly, resulting in a large number of routing messages and
stability problems. Again, the overhead was not considered justi�able [15].

The third alternative, probe packets, also su�ers from the disadvantage of added overhead
unless probe packets had a dual role of carrying other information in them. If the latter
were the case, there would be no reason not to use every packet going through the network
as a probe packet. We may achieve this by reserving a �eld in the packet that is used by the
network to signal congestion. This leads us to the last two alternatives.

The fourth alternative, reverse feedback, requires routers to piggyback the signal on the
packets going in the direction opposite the congestion. This alternative has the advantage in
that the feedback reaches the source faster. However, the forward and reverse tra�c are not
always related. The destinations of the reverse tra�c may not be the cause of or even the
participant in the congestion on the forward path. Also, many networks (including DNA)
have path splitting such that the path from A to B is not necessarily the same as that from
B to A.

The �fth alternative, forward feedback, sends the signal in the packets going in the forward
direction (direction of congestion). The destination either asks the source to adjust the load
or returns the signal back to the source in the packets (or acknowledgments) going in the
reverse direction. This is the alternative that we �nally chose for further study.

The minimal forward feedback requires just one bit of feedback signal with every packet.
Although at �rst, one bit may not appear to be able to carry enough information, we show
in the second part [19] of this report series that there is considerable performance gain even
by single-bit feedback.

Most of the discussions in this and associated reports center around window-based ow-
control mechanisms. However, we must point out that this is not a requirement. The
congestion avoidance algorithms and concepts can be easily modi�ed for other forms of
ow control such as rate-based ow control in which the sources must send below a rate
(packets/second or bytes/second) speci�ed by the destination. In this case, the users would
adjust rates based on the signals received from the network.

5 PERFORMANCE METRICS

The performance of a network can be measured by several metrics. The commonly used
metrics are: throughput, delay, and power.

Throughput is measured by the user bits transmitted per unit of time. Thus, protocol over-
head, retransmissions, and duplicate packets are not considered in throughput computation.

10

Some of the more important applications of computer networks are: �le transfer, mail, and
remote login. The �rst two are throughput sensitive. The response time (time for the packet
to reach the destination) is generally not so important. On the other hand, for remote login,
response time is more important than throughput.

The aforementioned goal, maximizing throughput and minimizing response time, are mutu-
ally contradictory in that all methods to increase throughput result in increased response
time as well and vice versa. To resolve this contradiction, Giessler et al. [8] proposed the
following metric:

Power =
Throughput�

Response time

Here, � is a positive real number. Notice that by maximizing power, one tries to maximize
throughput and minimize response time. Normally, � = 1, i.e., increasing throughput and
decreasing response time are given equal weights. By setting � > 1, one can favor �le tra�c
by emphasizing higher throughput. Similarly, by setting � < 1 one can favor terminal tra�c
by emphasizing lower response time.

It must be pointed out that the throughput and response time used above are system-wide
throughput (total number of packets sent for all users divided by the total time) and system-
wide response time (averaged over all users) giving us system power. The operating point
obtained in this manner is di�erent from the one that would be obtained if each of the n users
tries to maximize their own individual power (ratio of individual throughput and individual
response time). Maximizing individual power leads to a number of undesirable e�ects [2, 10].

6 GOALS

Design of a congestion avoidance scheme requires comparing a number of alternative algo-
rithms and selecting the right parameter values. To help us do this we set a number of goals
which are described in this section. Each of these goals has an associated test to help us
verify whether a particular scheme meets the goal.

6.1 EFFICIENT

A network operating at the knee is said to be operating e�ciently. The e�ciency is measured
by the system power as de�ned earlier. The congestion avoidance scheme should lead the
network to the knee, that is, the point of maximum system power.

11

Given any performance metric and a system of n users, there are two kinds of e�cient oper-
ating points: individual and global. Individually e�cient operating points occur when each
user tries to maximize its performance without regard for the performance of others. This
may or may not lead to the globally e�cient operating point where the total system per-
formance is the highest. In other words, at the globally e�cient operating point, there may
still be opportunities for each individual user to improve its performance (while degrading
that of others). We have explicitly chosen global e�ciency and not individual e�ciency as
our goal.

We set the parameters of our congestion avoidance schemes to values that maximize global
power and fairness.

6.2 RESPONSIVENESS

Network con�gurations and tra�c vary continuously. Nodes and links come up and down.
The load placed on the network by users is highly varying. The optimal operating point is
therefore a continuously moving target. It cannot be assumed that the optimal operating
point observed in the past is still optimal because the con�guration or workload might
have changed. If the feedback is limited to a binary signal [19], this leads to schemes that
continuously change the load slightly below and slightly above the optimal level and verify
the current state by observing feedback signals obtained from the network.

When operating at the knee, to sense the state of the network, there is a need for oscillation
of the window around the optimal level. Any attempt to eliminate oscillations also leads
to the loss of responsiveness. We explicitly tested the responsiveness of the algorithms by
changing router service times during a simulation and verifying that the operating point
followed the change in the optimal window size.

6.3 MINIMUM OSCILLATION

Schemes with a smaller amplitude of oscillation are preferable over those with a larger am-
plitude. We found that schemes with smaller oscillations are also slower (less responsive)
algorithms in that they take longer to reach the target. We therefore need to make a suitable
tradeo� between the two requirements.

12

6.4 CONVERGENCE

If the network con�guration and workload were to remain stable, the scheme should bring
the network to a stable operating point. Many alternatives were rejected because they were
divergent. This means that the total load on the network either increased slowly towards
in�nity or decreased towards zero without stabilizing.

We also found cases where the system throughput would converge to a stable value but the
individual user's throughput would vary considerably. We call this phenomenon false con-

vergence. More speci�cally, it could be called global convergence without local convergence.

Among converging schemes, the preferred alternative is the one that takes the least time to
converge.

6.5 FAIRNESS

In any system shared by n independent users, fairness is an important issue. Fairness de-
mands that given n users sharing a resource, each of them should get the same share of the
resources (unless the user itself demanded less than its fair share). Thus, n users sharing a
path and each demanding in�nite resources should have equal throughput. If the through-
puts are not exactly equal, the fairness can be quanti�ed using the following fairness function
[11]:

Fairness =
(
Pn

i=1 xi)
2

n
Pn

i=1 x
2

i

Here, xi is i
th user's throughput.

In designing congestion avoidance schemes and in setting parameter values our goal was to
choose schemes and values that maximized fairness. Often, we found that there is a tradeo�
between e�ciency and fairness. The values that maximize system power are not necessarily
the same as those that maximize fairness and vice versa. In such cases, we tried to err on
the side of e�ciency.

The de�nitions of fairness and e�ciency presented in this report treat the network as a single
resource to be shared equally among all users.

6.6 ROBUSTNESS

Robustness requires that the scheme work in a noisy (random) environment. Thus, schemes
which work only for deterministic service times or schemes that presume a particular dis-

13

tribution (exponential) for service times were discarded. We tested robustness by varying
distributions of service times.

6.7 SIMPLICITY

Simplicity of schemes is also an important goal. For most alternatives we tried their simpler
versions. Only if the simpler versions caused a signi�cant reduction in performance did we
sacri�ce simplicity.

6.8 LOW PARAMETER SENSITIVITY

In designing the congestion avoidance schemes we studied sensitivity with respect to param-
eter values. If the performance of a scheme was found to be very sensitive to the setting of
a parameter value, the scheme was discarded.

6.9 INFORMATION ENTROPY

Information entropy relates to the use of feedback information. We want to get the maxi-
mum information across with the minimum amount of feedback. Given n bits of feedback,
information theory tells us that the maximum information would be communicated if each
of the 2n possible combinations were equally likely. In particular, with one bit of feedback,
maximum information would be communicated if the bit was set 50% of the time, i.e.,

P (bit = 1) = P (bit = 0) = 0:5

6.10 DIMENSIONLESS PARAMETERS

A parameter that has dimensions (length, mass, time) is generally a function of network
speed or con�guration. A dimensionless parameter has wider applicability. For example, in
choosing the increase algorithm we preferred to increase the window by an absolute amount
of k packets rather than a rate of t packets/second. The optimal value of the latter depends
upon the link bandwidth. Our goal in developing the congestion avoidance scheme was to
have all parameters dimensionless, thereby ensuring that the scheme would be applicable
to networks with widely varying bandwidths. Of course, we also studied the parameter
sensitivity and chose the least sensitive alternatives.

14

Figure 3: Components of a congestion avoidance scheme

6.11 CONFIGURATION INDEPENDENCE

Con�guration independence is a desirable goal. We therefore tested our schemes for many
di�erent con�gurations. Although it is a noble goal, generally it is possible to come up with
a con�guration where a given scheme will not satisfy one of the goals. We have tried to
identify such limitations wherever appropriate.

In many network architectures, including DNA, paths are dynamically calculated. As the
routers go up or down, the paths change. The congestion avoidance scheme should adapt to
the changing con�gurations.

7 COMPONENTS OF AN AVOIDANCE SCHEME

The two key components of any congestion avoidance scheme, the feedback mechanism and
the control mechanism, have already been discussed earlier in this report. We call these
network policies and user policies, respectively. A more detailed break down of these
policies is shown in Figure 3. This allows us to concentrate on one component at a time
and test various alternatives for that particular component. During the analysis, it can be
assumed that other components are operating optimally. Of course, one would need to verify
at the end that the combined system worked satisfactorily under imperfect conditions.

15

The network policy consists of three algorithms: congestion detection, feedback �lter, and
feedback selector. The user policy also consists of three algorithms: signal �lter, decision
function, and increase/decrease algorithm. These generic algorithms apply to many di�er-
ent congestion avoidance schemes. For example, these six algorithms would apply whether
we choose to implement network feedback in the form of source quench messages or we
implement it via a �eld in the packet header.

7.1 CONGESTION DETECTION

Before the network can feedback any information, it must determine its state or load level.
In a general case, the network may be in one of n possible states. The congestion detection
function helps map these states into one of the two possible load levels: overload or underload
(above or below the knee). A k-ary version of this function would result in k levels of load
indications. A congestion detection function, for example, could work based on the processor
utilization, link utilization, or queue lengths.

7.2 FEEDBACK FILTER

After the network has determined the load level, it may want to verify that the state lasts
for a su�ciently long period before signaling it to the users. This is because a feedback of
state is useful only if the state lasts long enough for the the users to take action based on it.
A state which changes very fast may lead to confusion. By the time users become aware of
the state, it no longer holds and the feedback is misleading. Therefore, we need a (low-pass)
�lter function to pass only those states that are expected to last long enough for the user
action to be meaningful. Examples of feedback �lters are exponential weighted average or
moving average of processor utilization, link utilization, or queue lengths.

7.3 FEEDBACK SELECTOR

After the network has determined that it is overloaded (or underloaded) and has ensured
that the state is likely to last long enough, it needs to communicate this information to users
so that they may reduce (or increase) the tra�c. A feedback selector function may be used
to determine the set of users to be noti�ed. In other words, the network may want all users
to reduce the tra�c or it may selectively ask some users to reduce and others to increase the
tra�c. In the simplest case, it may give the same feedback signal to all users.

16

7.4 SIGNAL FILTER

The users receiving the feedback signals from the network (routers) need to interpret the
signal. The �rst step in this process is to accumulate a number of signals. Due to the proba-
bilistic nature of the network, all these signals may not be identical. Some may indicate that
the network is overloaded while others may indicate that it is underloaded. The user needs
to combine these to decide its action. Some examples of received signal �lter are majority

voting (50%), or three-quarter majority (75%), or unanimous (100%). The percentage may
be used after applying a weighting function, for example, giving higher weight to recent
signals.

7.5 DECISION FUNCTION

Once the user knows the network load level, it has to decide either to increase its load or
decrease its load. The function can be broken down into two parts: the �rst part determines
the direction and the other determines the amount. These parts are called decision function
and increase/decrease algorithms, respectively.

The decision function takes feedback signals for the last T seconds, for instance, as input
parameter, and determines the load level of the network path. The key parameter is T - ,
the interval for which it should accumulate feedback. This determines the window update
frequency. We will further discuss window update frequency later in this report.

In its simplest form a decision function may be a 2-way function indicating whether the
load should be increased or decreased. Some would argue that it may be a 3-way function
including a gray area where no action is taken.

Another generalization often mentioned is to make a decision but not act on it unless we
reach the same decision again, one or more times in the future. This may seem to increase
the probability of reaching the right decision.

Both the generalizations mentioned above result in postponement of the action thereby caus-
ing the system to stay in the same state longer. This may be useful if the goal (knee) is
stable but in a computer network the knee is a continuously moving target and it is helpful
to recon�rm the state by perturbing the load, however slightly, one way or the other.

The costs of the two types of errors, increasing the tra�c under overload and decreasing
the tra�c under underload, determine whether the users should err on the side of being
pessimistic or optimistic. For cli�-based policies (congestion control schemes), it is better
to be pessimistic because the cost (loss of a packet) of miss-signal is high. For knee-based
policies (congestion avoidance schemes), the two costs are approximately equal (assuming

17

the knee is far away from the cli�). We therefore recommend a two-way decision function
and no postponement of action.

7.6 INCREASE/DECREASE ALGORITHM

The key part of a control scheme is the control, i.e., the action taken as a result of the
feedback. For congestion avoidance schemes this part lies in the increase/decrease algorithms
used by the users. These algorithms are a key to achieving e�ciency as well as fairness. The
choice of other components of the congestion avoidance scheme depends upon the type of
feedback chosen, whereas, the increase/decrease algorithms can be discussed and analyzed
generically in great detail and apply to several feedback mechanisms. We discuss some of
these alternatives in the next section. A more complete discussion may be found in Chiu
and Jain [4].

8 INCREASE/DECREASE ALGORITHMS

In this section we compare a number of alternative algorithms for window increase and
decrease. We show that an additive increase, multiplicative decrease algorithm provides fair
and stable operation and that it is important to keep windows as real valued variables which
are rounded-o� to the nearest integer.

We assume that the source and destination transport entities are using a window-based
ow-control. Thus, increasing the window increases the load on the network and decreasing
the window decreases the load. It must be pointed out, however, that all the arguments
apply equally well to other forms of ow control such as rate based ow-control, in which
the destination permits the source to send data at a pre-speci�ed rate (bits/second or pack-
ets/second). In this case, it is obvious that increasing the rate increases the load and vice
versa.

A general increase (or decrease) algorithm would take the current control (ow-control win-
dow) and feedback signals as input arguments and produce the new control as an output
argument. However, as discussed above, we assume that the feedback signals have been
analyzed by other components of the congestion avoidance scheme and the decision provided
to this component is to increase or decrease the tra�c. Thus, the key parameter to the
increase/decrease algorithms is the current window.

We considered two types of increase/decrease algorithms:

18

1. Additive - The window is increased or decreased by a �xed amount.

w = w + k1

w = w � k2

2. Multiplicative - The window is increased or decreased by a �xed multiple.

w = r1w; r1 > 1

w = r2w; 0 < r2 < 1

More general increase/decrease algorithms using linear and non-linear functions of the win-
dow were also considered and are described in Part 3 of this report series [4]. Here, we
concentrate on choosing one of the following four combinations:

1. Multiplicative Increase, Multiplicative Decrease

2. Multiplicative Increase, Additive Decrease

3. Additive Increase, Additive Decrease

4. Additive Increase, Multiplicative Decrease

In all these alternatives we assume that the computed value is rounded to an integer value
and that the window is never allowed to go below 1.

The two key requirements of the increase/decrease policy are that it should allow a single user
network to operate as close to optimality as possible and that it should allow a multi-user
network to operate as fairly as possible. In comparing the above alternative we will assume a
simpli�ed model of the network in which all users share the same path and therefore receive
the same feedback. If ith user has a window wi, the network gives the signal to go up if and
only if:

nX

i=1

wi � wknee

Here, wknee is the window at the knee of the throughput (or response time) curve for the
given network con�guration.

The fairness goal dictates that regardless of any starting point all n users should converge
to the same �nal window wknee=n. While going down, the users with higher windows should
go down more than those with lower windows, i.e., the decrease should be proportional
(multiplicative). While going up, the users with lower windows should go up more than

19

Figure 4: Di�erent increase/decrease algorithms may lead to fair or unfair stable operating
points.

those with higher windows, i.e., the increase cannot be multiplicative. These observations
leave us only with the fourth alternative of additive increase and multiplicative decrease. The
other three alternatives are unfair, that is, they may stabilize at points where the windows
are not equal. Instead of proving it mathematically, we show an example in Figure 4. We
consider a network shared by two users. The optimal window for this network con�guration
wknee is assumed to be 15.5. User 1 starts �rst and User 2 joins in later. Figure 4b shows
the window sizes for the two users (called window trajectories) with both users following
an additive increase by 1 and additive decrease by 1 algorithm. After a while the two users
stabilize with the following sequence of window sizes and feedback signals:

User 1 Window: 14 15 14 : : :

User 2 Window: 1 2 1 : : :

Total Window: 15 17 15 : : :

Network Signal: up down up : : :

20

Thus, the system reaches a stable state where the �rst user oscillates with an average window
of 14.5, while the second user oscillates with an average window of 1.5. The throughput of
the �rst user is approximately ten times that of the second. The algorithm is unfair.

It can similarly be shown that the �rst two alternatives with multiplicative increase are
unfair.

The window trajectory, using the fourth alternative (additive increase and multiplicative
decrease) for the same network con�guration, is shown in Figure 4c. With this algorithm
the two users stablize at window size very close to each other. This algorithm is fair in most
cases. The unfairness occurs in this case mainly due to the control (window) being discrete
(integer valued). This issue as well as a few others are discussed next.

8.1 EFFECT OF DISCRETE CONTROL

An important aspect of increase/decrease algorithms is the truncation/rounding issue. There
are two values for the window size that a user maintains: computed and implemented.
The values computed using the increase and decrease algorithms are real valued variables.
However, if the computed window comes out to 2.6, for instance, the user must decide
whether to use 2 (truncated) or 3 (rounded) as the number of packets (implemented window)
which will be sent in the next cycle.

It is important that the window values be maintained as real numbers even though actual
windows used are integer valued. It is possible to study the e�ect of discrete control by
studying the variation of the window at a user in isolation assuming that the network feedback
is perfect (based on the global knowledge). Thus, using a simple computer program, it is
possible to try various values of increase amount, decrease factor, starting window values,
and to �nd the cases where the algorithms stabilize to unfair values. We found that generally,
single precision oating point representation of window is adequate.

If only integer values are maintained for the window, additive increase and multiplicative

decrease may also stabilize to unfair values, although this may not be the case for all values
of increase amounts and decrease factors. Figure 5 shows a particular case of unfairness from
having discrete control. The two-user con�guration discussed earlier in Figure 4 is used. The
users increase additively by 1 and decrease multiplicatively by a factor of 0.8. The optimal
window is 15.5. After a while the two users stabilize such that User 1 has a window of 10 and
user 2 has a window of 6. The sum is more than wknee = 15:5 and therefore both users are
asked to reduce. They come down (using a factor of 0.8) to 8 and 4 (0.8(6)=4.8 truncated
to 4). The total window is less than wknee and hence both users are asked to go up. They go
up by 1 to 9 and 5. The total window is still less than wknee and the users go up to 10 and 6.
After this, the cycle repeats and the second user gets 6/10th of the �rst user's throughput.

21

Figure 5: An example of unfairness caused by discrete (integer valued) window sizes even
with additive increase and multiplicative decrease.

The same con�guration is fair when rounding is used, as was illustrated earlier in Figure
4c. By exhaustively searching the parameter space, we veri�ed the fairness of the additive
increase and multiplicative decrease algorithmwhen the implemented window size is obtained
by rounding the computed window. A rigorous mathematical analysis of various alternatives
is presented in [4].

8.2 INCREASE AMOUNT AND DECREASE FACTOR

The additive increase and multiplicative decrease with rounding lead to a fairly stable op-
eration for all values of the two parameters, namely, the increase amount and the decrease
factor. However, not all values are equally good. The values a�ect the time required to
converge to a stable operation and the amount that the total tra�c on the network will
oscillate during stable operation. The goal is to minimize the time to convergence as well as
to minimize the oscillation size during stable operation. Unfortunately, these two goals are
contradictory in the sense that the parameter values that decrease the time needed to reach
stable operation tend to increase the oscillation size also.

We recommend using an increase amount of 1 and a decrease factor of 0.875. The �rst value
was chosen to minimize the size of oscillations and also to ease computations on a wide
variety of processors. Multiplying by 0.875 (1� 1

8
) requires an arithmetic shift operation and

subtraction.

22

Figure 6: Birth policies.

8.3 BIRTH POLICIES

Another alternative to convergence time and the oscillation size dilemma is the use of a
birth policy. The parameter values are initially chosen to minimize the time to convergence.
Once convergence is reached, another set of parameter values is used which minimizes the
oscillation size. The convergence is detected by a change of direction (a decrease following
an increase or vice versa).

Figure 6 shows the case of a single user passing through a path with a knee at 15.5, starting
with a window of 1. Two cases are shown. In the �rst case (without a birth policy) the
increase amount and the decrease factor are set at 1 and 0.875, respectively. In the second
case (with a birth policy) the increase amount is 2 until the �rst decrease when the increase
amount is reset to 1. It is seen that the birth policy does allow the user to reach the knee
faster. However, the additional complication of keeping an additional code to detect the
direction change may not be considered worthwhile.

8.4 SOURCE BOUND CASE

In the discussion so far, we have assumed that the sources are able to send as many packets as
the optimal window computation requires. An interesting case to consider is what happens
if the source (and not the network or the destination) is the bottleneck. In this case, the
network always gives increase signals to the user which computes a new larger window but is
not able to send more than w packets in one round-trip delay. Based on w packets per cycle,
the network continues to ask the user to increase the load. In this case, it is possible for the
computed window to increase continuously and overow. Actually, in this case the computed

23

window has no meaning and therefore should never be increased beyond w + dw, where dw
is the increase amount and w is the previously `used' window. This leads to the rule that a
user does not increase the window if it has not been able to implement the previous increase.

8.5 DESTINATION BOUND CASE

If the destination has limited bu�ering then it can impose a limit on the window used by
the source. The source should never increase the window beyond that permitted by the
destination. It tries to satisfy both the destination as well as the network.

8.6 K-ARY SEARCH

In addition to the four alternatives of additive/multiplicative, increase/decrease, we also
tried a k-ary search for the operating point determined by the knee. The well-known binary
search is a special case of k-ary search with k=2. In the k-ary search, the user remembers
the highest and lowest windows at which the direction was changed. A direction change is
de�ned as an increase followed by a decrease or vice versa. If wlow and whigh are the two
window values at which the direction was changed, the user next tries the window:

w = wlow +
whigh � wlow

k

Here, k is a real number greater than 1.

We found that the k-ary search not only requires additional state variables (wlow and whigh)
to be maintained, but it also is less responsive. It works �ne in stable con�gurations. How-
ever, in cases where the number of users or router speeds change during simulation, we need
algorithms to allow previously remembered values to be forgotten in favor of the new in-
formation. This introduces additional complexity making the k-ary search not worthwhile
pursuing.

The discussion on increase/decrease is summarized by the algorithm given in Box 1.

9 WINDOW UPDATE FREQUENCY

The issue of window update frequency involves a decision on how often the users should
change their windows. This is another component algorithm (along with increase/decrease)

24

Box 1: Increase/decrease algorithms

PROCEDURE increase(w,wmax,wused);
REAL w; !Computed window (real valued);
INTEGER wmax; !Window permitted by destination;
INTEGER wused; !Window used (integer valued);
BEGIN

w:=w + 1; !Go up by 1;
IF (w > (wused + 1)) THEN w := wused + 1; !No more than 1 above last used;
IF (w > wmax) THEN w := wmax; !Obey destination;
wused:=Entier(w + 0:5); !Entier(x) gives an integer � x;

END of increase;

PROCEDURE decrease(w,wused);
REAL w; !Computed window (real valued);
INTEGER wused; !Window to be used (integer valued);
BEGIN

w := 0:875 � w; !Multiplicative decrease;
IF (w < 1) THEN w := 1; !Do not reduce below 1;
wused:=Entier(w + 0:5); !Round-o�;

END of decrease;

that is common to many di�erent congestion avoidance schemes that we considered. The
ideas that are common to all avoidance schemes are being discussed here. A more speci�c
discussion relating to the binary feedback scheme appears in [19].

The key results we want to present in this section are that windows should be adjusted once
every two round-trip delays (two window turns) and that only the feedback signals received
in the past cycle should be used in window adjustment. We present a set of control theoretic
arguments and show that the simplest control scheme is obtained with these two restrictions.

In every system control scheme, we have a choice of exercising control (e.g., changing a
window) every time we have a new feedback signal from the system. Exercising control too
often may lead to unnecessary oscillations, while delaying control for long may lead to a
lethargic system that takes too long to converge. The optimal control frequency depends
upon the feedback delay, that is, the time required for the control to take e�ect.

To demonstrate the feedback delay, consider an example of a new source of tra�c deciding to
join the network with a large starting window of w1. As shown in Figure 7, this is a case of
the source changing its window from w0 to w1 with w0 = 0. Let us assume that this happens
at time t = 0. The e�ect of this window change will not be felt immediately. In fact, the �rst

25

Figure 7: Decision Frequency. After the window w is changed from w0 to w1, the feedback
f received during the second round-trip delay interval is a function of w1. That received
during the �rst round-trip delay is a function of both w0 and w1.

few packets will �nd the network response to be the same as before the source came on. The
�rst network feedback to the source will come with the �rst packet at time t = r0, where r0
is the round-trip delay corresponding to the old control (zero window from this source). It is
only the �rst packet in the next window cycle ((w1 + 1)th packet) that will bring a network
feedback corresponding to window w1. This packet would enter the network at time t = r0
and come back at time t = r0+r1, where r1 is the round-trip delay corresponding to window
w1. The key point to notice is that it takes at least 3 two round-trip delays for the e�ect of
a window change to be observed. The feedback signals y(n) (a vector) observed in the nth

cycle correspond to the windows during cycles n� 1 and n� 2.

y(n) = fnfw(n� 1); w(n� 2)g

Here, w(n) is the window in cycle n. It may be determined as a function of all past feedback
and window history:

w(n+ 1) = fnfw(n� j);y(n� i); i = 0; 1; 2; : : : ; j = 0; 1; 2; : : :g

Once we understand the delayed feedback aspect, it is possible to write down the state space
equations for the system and determine the optimal control policy. The most general control
functions may require us to remember a long history. The simplest control policy is obtained

3The delay may be more if the network feedback signals are based on the state of the network in the

previous cycle rather than this cycle.

26

if we keep the window constant for two cycles, so that w(n� 1) = w(n) for n even, and use
only the feedback for the last cycle, that is, for even values of n:

y(n) = fnfw(n� 1)g

w(n+ 1) = fnfw(n);y(n)g

This is the argument for adjusting the window only every two round-trip delays and for using
the feedback signals obtained during the last round-trip interval.

10 SIMULATION MODEL

Various schemes for congestion avoidance were studied using a combination of analytical and
simulation modeling techniques. In this section, we describe the simulation model used. The
model described in [12], has been extended to simulate congestion avoidance algorithms. The
model written in SIMULA simulates portions of network and transport layers and was used
initially to study timeout algorithms [13] and a timeout based congestion control scheme
[14]. In the model, the transport layer protocol is simulated in detail. In particular, the
ow control portion is a verbatim copy of the DNA's transport layer speci�cations [6]. The
routers and links are modeled as a single queue.

A number of features of the model including the trace facility and various modules have
already been described in [12], and will not be repeated here. Instead we concentrate on
the new features: shared paths, non-homogeneous paths, satellite links, and staggered start.
Brief descriptions of these features follow.

10.1 SHARED PATHS

The model allows a con�guration shown in Figure 8a. A number of sources on one local
area network communicate with a number of destinations on another local area network and
connect to the �rst by a number of routers. Its logical representation is shown in Figure 8b.
There is no limitation on the number of users or number of routers.

10.2 NON-HOMOGENEITY

Routers and links are represented by queues, each of which can have a di�erent service rate.
The service time is determined by the packet length and the service rate. Local tra�c is

27

Figure 8: Initial con�gurations. Two LANs interconnected via lower speed links possibly
including a satellite link.

assumed to slow down the service rate. Thus, even if all routers and links are operating
at the same speed, di�erent service rates may be used depending upon the percentage of
resources used up by local tra�c.

10.3 SATELLITES

Satellite links consist of a ground station followed by a long propagation delay. The ground
station is simulated like other intermediate nodes, that is, a queue with a given service rate.
The propagation delay is constant. A path may contain any number of satellite links.

10.4 STARTING GAP

It is possible to specify starting times individually for each user. This helps us verify that
the scheme adapts to a changing workload as users go on/o� the network.

10.5 TRANSIENTS

It is possible to simulate a transient change in service rate caused by increased local tra�c
or by nodes/links going down and coming back up. The speci�ed simulation length (of
packets to send) is divided into three parts. During the middle part, the service rate of the

28

bottleneck, as well as number of bu�ers there, may be changed (increased/decreased) to any
speci�ed value.

10.6 PARAMETER VARIATION

There are more than 40 di�erent input parameters to the model. It is possible to run many
simulation experiments by specifying a range of values of any subset of the parameters. This
allows us to get a plot of any performance variable as a function of the parameter values,
thereby �nding the optimal value as well as determining the sensitivity.

10.7 WORKLOAD

The workload is speci�ed by the number of active users and the packet size distribution.
Once a user is active, it has a su�cient supply of packets to transmit, and is limited only
by the ow-control windows. The packet sizes can take a number of di�erent distributions
such as: constant, uniform, exponential, bimodal, erlang, etc. Constant values are useful in
running deterministic simulations and debugging.

By specifying the network service time that is less than the source service time, the model
allows the simulation of a case where the throughput is limited by the source and not the
network. However, this case is not very interesting, as the network has little congestion. We
use this case to verify that all the algorithms do work in the source-bound case also.

10.8 PERFORMANCE DATA

The model provides time-varying graphs of the performance of individual users, routers, as
well as the whole system. It is possible to plot ow-control windows, throughput (packets
per unit of time), packet round-trip delays, exponentially weighted average of delay, network
feedback (bits, for example), router queue lengths, and router utilization. These time-varying
graphs can be observed on line as the simulation is proceeding and are helpful in monitoring
the simulation.

For each run, �rst a set of goal throughputs is computed for each user. This is the throughput
that gives the e�cient and fair performance for a given con�guration and workload. At the
end of a batch run, the model computes average (over the run) user throughput and a scaled
value (ratio of actual to goal). The variance (across users) of the scaled throughput indicates
fairness. For a totally fair system, the variance should be zero. The average (across users)

29

of the scaled throughput indicates e�ciency. For an optimal system, the average scaled
throughput must be one, i.e., equal to the goal.

Averages and variances of each performance variable is obtained in three di�erent stages.
Consider, for example, user throughput. T (t; u; i; p) denotes throughput at time t for uth

user in the ith repetition of the simulation with pth input parameter set. T (u; i; p) would
represent average throughput for the uth user during ith repetition. T (i; p) would represent
average throughput across all users during ith repetition, and �nally T (p) would represent
average throughput (across all users and replications) for the given parameter set. Variance
is similarly computed at each level. High variance over time or high variance across users or
high variance over repetition is undesirable. Time variance of ow-control windows gives an
idea of the oscillations.

10.9 ASSUMPTIONS

10.9.1 No Loss of Packets

In our congestion avoidance studies, we concentrated on a no loss case. We assumed that the
routers have a large bu�er capacity. The performance degradation is caused not by packet
losses (as was the case with previous congestion control studies) rather by increased queueing
in the network.

10.9.2 Equal Paths

All results presented in the �rst two parts of this report series assume equal paths, i.e., packets
from all sources join the path at �rst router and leave it at the last router.

10.10 LIMITATIONS

The simulation model has the following known limitations.

10.10.1 No Reverse Tra�c

The acknowledgments traveling back from the destination to the source are not explicitly
simulated. The source is informed of the packet delivery as soon as the packet is accepted
by the destination.

30

10.10.2 No Acknowledgment Withholding

Each packet passing through the network brings with it the feedback. The acknowledg-
ments returning from the destination bring the feedback back to the source. If there is
acknowledgment-withholding so that a single acknowledgment is sent for a number of pack-
ets received, the destination would need an algorithm to combine multiple feedbacks received
or to piggyback all of them on the single acknowledgment. We have not yet studied such
cases.

11 TEST SEQUENCE

In order to verify that the congestion avoidance algorithms that we developed do satisfy the
goals described earlier in this report, we created a number of test scenarios for simulation.
In this section, we describe these test scenarios and show how they help verify the goals.
For each alternative considered, we repeated the test sequence, and if the alternative did not
provide acceptable performance for a test case, the alternative was rejected.

The test sequences are identi�ed by a three or four character identi�er constructed as follows.
The �rst character indicates whether the path is Homogeneous (H), Non-Homogeneous (N),
Satellite Link (S), or Mixed (M). A non-homogeneous path with one or more satellite links
is called mixed. The second character in the identi�er indicates if the packet lengths are
Deterministic (D) or Random (R). The third character n is a digit identifying the number of
users sharing the path. The fourth character, which is optional, indicates special conditions
and will be described later.

11.1 EFFICIENCY

Most alternatives were �rst tested for the MD1 con�guration shown in Figure 9. This is a
mixed con�guration with deterministic packet lengths and a single user. It is clear that the
alternatives that do not work with single users are not worth further consideration. The
deterministic nature of the simulation helps identify the bugs in the implementation of the
alternative. Due to the presence of the satellite delay, the e�cient (knee) window is generally
su�ciently high to help clearly see the e�ciency.

The single-user case also helps identify optimal values of some parameters. The bursty nature
of network tra�c makes the single-user case performance the most important.

If the alternative works satisfactorily for MD1, we test other sub-cases such as ND1 (without

31

Figure 9: MD1 con�guration used for testing e�ciency.

Figure 10: MDn con�guration used for testing fairness.

the satellite) and HD1 (homogeneous). We found a few schemes that work mainly because
of the long delay introduced by the satellite and therefore do not work with ND1 and HD1.

11.2 FAIRNESS

The next step is to see if the alternative is fair. We therefore move to the MDn con�guration
shown in Figure 10 which is similar to MD1 con�guration shown earlier but with n users
sharing the same path. In a totally fair scheme, each user should get (1=n)th of the total
system throughput.

32

Figure 11: ND9 con�guration used for testing overload case.

11.3 CONVERGENCE

Some schemes diverge if there are too many users. Such schemes were discovered by using
an ND9 con�guration shown in Figure 11. This con�guration has nine users sharing a non-
homogeneous deterministic path. For this con�guration, we set the service rates such that
the knee occurs when the sum of the window sizes is 3. Obviously, with nine users each
having a minimum window limit of 1, the knee can never be achieved. The best alternatives
keep the window �xed at 1 for all users. Others allow them to alternate between 1 and 3.
Divergent alternatives allowed the window sizes to grow inde�nitely in this test case.

11.4 ROBUSTNESS

The scheme should work satisfactorily for any given distribution of packet sizes. We found the
exponential distribution to be the one most di�cult to satisfy. Therefore, we test robustness
by using MR1 and NR1 con�gurations with exponentially distributed packet lengths. Single-
user cases help us concentrate on the e�ects of randomness. We replicated the simulation
several times (with di�erent random-number generation seeds) to verify that the scheme does
give an acceptable average performance and that the variation of the window is acceptable.
NR1 con�guration without satellite is more di�cult than MR1 because in the latter, the
satellite delay, which constitutes a large part of the total delay, is a constant.

33

11.5 RESPONSIVENESS

We test responsiveness by introducing temporary changes in the bottleneck router speed and
verifying that the scheme adapts to the new knee. This test case is identi�ed as MD1T, a
mixed, deterministic, single-user case with transients. The transient feature of the simulation
was described earlier in this report.

Two other aspects of responsiveness are starting credit value and staggered start. These are
described separately below.

11.6 ANY INITIAL WINDOW

If a scheme is responsive and adapts to changes in the network con�guration, the initial
window at which a user starts should not matter. We verify this requirement by using an
MD1H con�guration in which the user starts at a very high window, generally several times
the knee value.

11.7 STAGGERED START

Another aspect of responsiveness is the change in the number of users. In actual networks,
users constantly get on/o� the network. We simulate this condition by using the staggered
start feature of the simulation. The con�guration called MDnS starts initially with one user
and the (i + 1)st user comes on after ith user has sent a prespeci�ed fraction, for instance
10%, of its total packets.

11.8 SOURCE BOUND

It is possible to have networks in which the sources of tra�c, not the networks, are the
bottleneck. They cannot send packets as fast as the network would allow them to. We
call this the source-bound case and it is tested by the con�guration called ND1B - non-
homogeneous deterministic, one user with bottleneck source.

12 SUMMARY

The key contributions of the research reported in this report are the following.

34

1. We have introduced a new term congestion avoidance. It has been distinguished from
other similar terms of ow control and congestion control. It is shown that the pre-
ventive nature of congestion avoidance helps the network use its resources in a globally
optimal manner.

2. We have shown that the key to congestion avoidance in connectionless networks is
feedback from the network to the users about its state and a cooperative e�ort on the
part of the users to adjust their demands based on this feedback.

3. We listed a number of alternatives for the feedback and described the criteria used to
select the set of acceptable alternatives. Also, a number of goals were described that
helped select the best alternative from this set.

4. It has been shown that the problem of congestion avoidance can be broken down into
a number of components. The interrelationships among these components, if any, were
described.

5. The demand (ow-control window) increase/decrease algorithms used by sources play
a key role in the design of a congestion avoidance scheme. These algorithms, as well
as the question of demand update frequency, were discussed.

6. The goals that we set to measure the goodness of congestion avoidance schemes were
quanti�ed using a simulation model and a series of test sequences. These were de-
scribed.

This is the �rst report in a series describing our research on congestion avoidance. The
next report in this series [19] describes the application of the concepts described here to the
development of a congestion avoidance scheme using binary feedback.

13 ACKNOWLEDGMENTS

Many architects and implementers of Digital's networking architecture participated in a
series of meetings over the last three years in which the ideas presented here were discussed
and improved. Almost all members of the architecture group contributed to the project in
one way or another. In particular, we would like to thank Tony Lauck and Linda Wright
for encouraging us to work in this area. Radia Perlman, Art Harvey, Kevin Miles, and Mike
Shand are the responsible architects whose willingness to incorporate our ideas provided
further encouragement. We would also like to thank Bill Hawe, Dave Oran, and John Harper
for feedback and interest. The idea of proportional decrease was �rst proposed by George
Verghese. The concept of maximal fairness was proposed by Bob Thomas.

35

References

[1] V. Ahuja, \Routing and Flow Control in Systems Network Architecture," IBM Systems
Journal, Vol. 18, No. 2, 1979, pp. 298 - 314.

[2] K. Bharat-Kumar and J. M. Ja�e, \A New Approach to Performance-Oriented Flow
Control," IEEE Transactions on Communications, Vol. COM-29, No. 4, April 1981, pp.
427 - 435.

[3] W. Bux and D. Grillo, \Flow Control in Local-Area Networks of Interconnected Token
Rings," IEEE Transactions on Communications, Vol. COM-33, No. 10, October 1985,
pp. 1058-66.

[4] Dah-Ming Chiu and Raj Jain, \Congestion Avoidance in Computer Networks with a
Connectionless Network Layer. Part III: Analysis of Increase/Decrease Algorithms,"
Digital Equipment Corporation, Technical Report #TR-509, August 1987.

[5] David Clark, \NETBLT: A Bulk Data Transfer Protocol," Massachusetts Institute of
Technology, Lab for Computer Science, RFC-275, February 1985.

[6] Digital Equipment Corp., \DECnet Digital Network Architecture NSP Functional Spec-
i�cation, Phase IV, Version 4.0.0," March 1982.

[7] M. Gerla and L. Kleinrock, \Flow Control: A Comparative Survey," IEEE Transactions
on Communications, Vol. COM-28, No. 4, April 1980, pp. 553 - 574.

[8] A. Giessler, J. Haanle, A. Konig and E. Pade, \Free Bu�er Allocation - An Investigation
by Simulation," Computer Networks, Vol. 1, No. 3, July 1978, pp. 191-204.

[9] International Organization of Standardization, \ISO 8073: Information Processing Sys-
tems - Open Systems Interconnection - Connection Oriented Transport Protocol Spec-
i�cation," July 1986.

[10] J. M. Ja�e, \Flow Control Power is Nondecentralizable," IEEE Transaction on Com-
munications, Vol. COM-29, No. 9, September 1981, pp. 1301-1306.

[11] Raj Jain, Dah-Ming Chiu, and William Hawe, \A Quantitative Measure of Fairness
and Discrimination for Resource Allocation in Shared Systems," Digital Equipment
Corporation, Technical Report TR-301, September 1984.

[12] Raj Jain, \Using Simulation to Design a Computer Network Congestion Control Pro-
tocol," Proc. Sixteenth Annual Modeling and Simulation Conference, Pittsburgh, PA,
April 1985.

[13] Raj Jain, \Divergence of Timeout Algorithms for Packet Retransmission," Proc. Fifth
Annual International Phoenix Conf. on Computers and Communications, Scottsdale,
AZ, March 26-28, 1986, pp. 174-179.

36

[14] Raj Jain, \A Timeout-Based Congestion Control Scheme for Window Flow-Controlled
Networks," IEEE Journal on Selected Areas in Communications, Vol. SAC-4, No. 7,
October 1986, pp. 1162-1167.

[15] J. M. McQuillan, I. Richer, and E. C. Rosen, \The New Routing Algorithm for the
ARPANET," IEEE Transactions on Communications, Vol. COM-28, No. 5, May 1980,
pp. 711-719.

[16] J.C. Majithia, et al., \Experiments in Congestion Control Techniques," Proc. Int. Symp.
Flow Control Computer Networks, Versailles, France. February 1979.

[17] John Nagle, \Congestion Control in TCP/IP Internetworks," Computer Communication
Review, Vol. 14, No. 4, October 1984, pp. 11-17.

[18] K. K. Ramakrishnan, \Analysis of a Dynamic Window Congestion Control Protocol
in Heterogeneous Environments Including Satellite Links," Proceedings of Computer
Networking Symposium, November 1986.

[19] K. K. Ramakrishnan and Raj Jain, \Congestion Avoidance in Computer Networks with
a Connectionless Network Layer. Part II: An Explicit Binary Feedback Scheme," Digital
Equipment Corporation, Technical Report #TR-508, August 1987.

[20] A.S. Tanenbaum, Network Protocols. Prentice-Hall: Englewood Cli�s, NJ, 1981.

37

