
Internet Programming & Protocols
Lecture 8

TCP finite state machine

TCP flow-control and bandwidth-delay

TCP on long fat pipes

IPP Lecture 8 - 2

TCP: Overview

full duplex data:
– bi-directional data flow in

same connection
– MSS: maximum segment

size

connection-oriented:
– handshaking (exchange of

control msgs) init’s sender,
receiver state before data
exchange

flow controlled:
– sender will not overwhelm

receiver

point-to-point:
– one sender, one receiver

reliable, in-order byte steam:
– no “message boundaries”

pipelined:
– TCP congestion and flow

control set window size

send & receive buffers

socket
door

TCP
send buffer

TCP
receive buffer

socket
door

segment

application
writes data

application
reads data

© Kurose

IPP Lecture 8 - 3

TCP

TCP provides reliable stream of bytes

Header includes
– Checksum
– Sequence/ACK numbers
– Flow control window
– Port numbers

Protocol provides
– Connection establishment (SYN-ACK) and close (FIN)
– ACK for in-order bytes received
– Timers for packet retransmission
– Sliding window flow control with send and receive buffers
– Receiver buffers out of order packets

Duplicate ACKs
Then when missing packet arrives, cumulative ACK

– Protocol is “stateful”

IPP Lecture 8 - 4

TCP connection refused

If TCP port on server is not “active”, TCP replies with reset (RST)

on deneb: telnet achernar 9999

DENEB.1056 > ACHERNAR.9999: S 1039104000:1039104000(0)

win 8192 <mss 1460>

4500 002c c5fd 0000 3c06 faf2 80a9 5e4a

80a9 5e3f 0420 270f 3def 7800 0000 0000

6002 2000 d92b 0000 0204 05b4

ACHERNAR.9999 > DENEB.1056: R 0:0(0) ack 1039104001 win 0

4500 0028 f82f 0000 3c06 c8c4 80a9 5e3f

80a9 5e4a 270f 0420 0000 0000 3def 7801

5014 0000 10d5 0000

SYN flooding
Hacker denial of service
attack sends oodles of
SYN packets to active
server ports. Resources
are consumed awaiting
completion of 3-way
handshake.

IPP Lecture 8 - 5

TCP connection time out

If remote host does not respond or behind a firewall, TCP resends the
SYN packet several times, backing off exponentially. connect()
eventually fails with ETIMEDOUT. OS-dependent, but takes about 3
minutes and 6 tries with intervals { 3s, 6s, 12s, 24s, 48s}

Exponential backoff wasn’t in RFC 793 added in ‘88

Notice today’s TCP options in SYN packet in tcpdump below

1125876766.655553 manitou.33877 > wisp.telnet: S 167809258:167809258(0) win 5840
<mss 1460,sackOK,timestamp 45625354 0,nop,wscale 0> (DF) [tos 0x10]

1125876769.646955 manitou.33877 > wisp.telnet: S 167809258:167809258(0) win 5840
<mss 1460,sackOK,timestamp 45625654 0,nop,wscale 0> (DF) [tos 0x10]

1125876775.646951 manitou.33877 > wisp.telnet: S 167809258:167809258(0) win 5840
<mss 1460,sackOK,timestamp 45626254 0,nop,wscale 0> (DF) [tos 0x10]

1125876787.646953 manitou.33877 > wisp.telnet: S 167809258:167809258(0) win 5840
<mss 1460,sackOK,timestamp 45627454 0,nop,wscale 0> (DF) [tos 0x10]

1125876811.646953 manitou.33877 > wisp.telnet: S 167809258:167809258(0) win 5840
<mss 1460,sackOK,timestamp 45629854 0,nop,wscale 0> (DF) [tos 0x10]

1125876859.646965 manitou.33877 > wisp.telnet: S 167809258:167809258(0) win 5840
<mss 1460,sackOK,timestamp 45634654 0,nop,wscale 0> (DF) [tos 0x10]

IPP Lecture 8 - 6

TCP sending one byte

How many packets does TCP take to send one date byte?

How many extra (header) bytes? How long? (# of RTTs)

Contrast with sending one byte with UDP …

manitou.33878 > whisper.5001: S 885110161:885110161(0) win 5840 <mss
1460,sackOK,timestamp 45695408 0,nop,wscale 0> (DF)

4500 003c f421 4000 4006 a9ec c0a8 0104

a024 3add 8456 1389 34c1 b591 0000 0000

a002 16d0 cded 0000 0204 05b4 0402 080a

02b9 41b0 0000 0000 0103 0300

whisper.5001 > manitou.33878: S 2714686246:2714686246(0) ack 885110162 win 5792
<mss 1436,sackOK,timestamp 160286560 45695408,nop,wscale 5> (DF)

4500 003c 0000 4000 3406 aa0e a024 3add

c0a8 0104 1389 8456 a1ce d326 34c1 b592

a012 16a0 883c 0000 0204 059c 0402 080a

098d c760 02b9 41b0 0103 0305

manitou.33878 > whisper.5001: . ack 1 win 5840 <nop,nop,timestamp 45695411
160286560> (DF)

4500 0034 f422 4000 4006 a9f3 c0a8 0104

a024 3add 8456 1389 34c1 b592 a1ce d327

8010 16d0 b6bb 0000 0101 080a 02b9 41b3

IPP Lecture 8 - 7

manitou.33878 > whisper.5001: P 1:2(1) ack 1 win 5840 <nop,nop,timestamp 45695411
160286560> (DF)

4500 0035 f423 4000 4006 a9f1 c0a8 0104
a024 3add 8456 1389 34c1 b592 a1ce d327
8018 16d0 9cd5 0000 0101 080a 02b9 41b3
098d c760 20

manitou.33878 > whisper.5001: F 2:2(0) ack 1 win 5840 <nop,nop,timestamp 45695411
160286560> (DF)
4500 0034 f424 4000 4006 a9f1 c0a8 0104
a024 3add 8456 1389 34c1 b593 a1ce d327
8011 16d0 b6b9 0000 0101 080a 02b9 41b3
098d c760

whisper.5001 > manitou.33878: . ack 2 win 181 <nop,nop,timestamp 160286562 45695411>
(DF)
4500 0034 1445 4000 3406 95d1 a024 3add
c0a8 0104 1389 8456 a1ce d327 34c1 b593
8010 00b5 ccd3 0000 0101 080a 098d c762
02b9 41b3

whisper.5001 > manitou.33878: F 1:1(0) ack 3 win 181 <nop,nop,timestamp 160286562
45695411> (DF)
4500 0034 1446 4000 3406 95d0 a024 3add
c0a8 0104 1389 8456 a1ce d327 34c1 b594
8011 00b5 ccd1 0000 0101 080a 098d c762
02b9 41b3

manitou.33878 > whisper.5001: . ack 2 win 5840 <nop,nop,timestamp 45695413
160286562> (DF)
4500 0034 f425 4000 4006 a9f0 c0a8 0104
a024 3add 8456 1389 34c1 b594 a1ce d328
8010 16d0 b6b4 0000 0101 080a 02b9 41b5
098d c762

8 packets received by filter
IPP Lecture 8 - 8

TCP available window
If receiver application stops reading network data, its buffers fill and its
available window goes to 0. Sender probes with exponential backoff to
60 seconds, then persists. ANIMATION

15:25:08.069441 thdsun.1574 > victory.7654: . 48489:49885(1396) ack 1 win 1638

15:25:08.069441 victory.7654 > thdsun.1574: . ack 49885 win 1396 (DF)

15:25:08.069441 thdsun.1574 > victory.7654: . 49885:51281(1396) ack 1 win 1638

15:25:08.089442 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:25:08.089442 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:25:12.929625 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:25:12.929625 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:25:17.929814 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:25:17.929814 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:25:22.930002 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:25:22.930002 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:25:30.930304 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:25:30.930304 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:25:46.930908 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:25:46.930908 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:26:18.932116 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:26:18.932116 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:27:18.934380 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:27:18.934380 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

15:28:18.946637 thdsun.1574 > victory.7654: . 51281:51282(1) ack 1 win 16384

15:28:18.946637 victory.7654 > thdsun.1574: . ack 51281 win 0 (DF)

IPP Lecture 8 - 9

Lost connection

Connection breaks while sender is sending data. Retransmit with
exponential backoff, eventually write() fails (connection closed (RST))

14:04:09.729116 thdsun.1566 > victory.7654: P 1:6(5) ack 1 win 16384

14:04:09.729116 victory.7654 > thdsun.1566: P 1:6(5) ack 6 win 32736 (DF)

14:04:09.779118 thdsun.1566 > victory.7654: . ack 6 win 16379

14:04:26.079726 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:26.679749 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:28.679824 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:32.679973 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:40.680271 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:56.680869 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:05:28.682063 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:06:32.684451 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:07:36.686838 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:08:40.689225 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:09:44.691611 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

exponential backoff, max 11 tries (not in RFC 793)

Tom pulls out Ethernet cable

Note: if net comes back up, your app may still take
many more seconds before it resumes IPP Lecture 8 - 10

TCP finite state machine

IPP Lecture 8 - 11

TCP states
SYN-SENT represents waiting for a matching connection request after having sent a connection request.

SYN-RECEIVED represents waiting for a confirming connection request acknowledgment after having both
received and sent a connection request.

ESTABLISHED represents an open connection, data received can be delivered to the user. The normal
state for the data transfer phase of the connection.

FIN-WAIT-1 represents waiting for a connection termination request from the remote TCP, or an
acknowledgment of the connection termination request previously sent.

FIN-WAIT-2 represents waiting for a connection termination request from the remote TCP.

CLOSE-WAIT represents waiting for a connection termination request from the local user.

CLOSING represents waiting for a connection termination request acknowledgment from the remote TCP.

LAST-ACK represents waiting for an acknowledgment of the connection termination request previously
sent to the remote TCP (which includes an acknowledgment of its connection termination request).

TIME-WAIT represents waiting for enough time to pass to be sure the remote TCP received the
acknowledgment of its connection termination request. (2MSL wait state)

CLOSED represents no connection state at all.

A TCP connection progresses from one state to another in response to events.

IPP Lecture 8 - 12

State transitions

netstat –a
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 *:32768 *:* LISTEN
tcp 0 0 *:7777 *:* LISTEN
tcp 0 0 whisper.cs.utk.edu:ssh catv:2486 ESTABLISHED
tcp 0 0 whisper.cs.utk.ed:42917 thoth.cs.utk.edu:ldap TIME_WAIT

© Kurose

IPP Lecture 8 - 13

Funky state transitions

Simultaneous open
– Unlikely, but possible for both ends to initiate SYN for the same port pair at

the same instant
– TCP handles this, one flow is created. (OSI creates two)

Simultaneous close
– Both sides send FIN at the same instant
– TCP handles this OK
– Both sides go: FIN_WAIT_1 CLOSING TIME_WAIT

Timeout transitions
– Exponential backoff retries for

No reply to SYN
No reply to SYN-ACK (SYN flooding)
No reply to data transfer write()
No response to FIN

– Quiet time (2MSL wait)

IPP Lecture 8 - 14

TCP reset (RST)

RST packet (TCP header bit)
– sent when a connection request (SYN) arrives and no process is listening

on that port
– Socket option (SO_LINGER) allows abortive close -- sends RST instead of

normal FIN processing
– If retransmits of packet fail, sender returns error to write() and sends RST
– If delayed packets (or bogons) arrive for a closed or non-existent

connection, the host sends back a RST

Hacker note:
– You can’t just send random RST packets and close other’s TCP

connections. The kernel checks that sequence/ack numbers are “proper”
and that the port numbers jive.

– A hacker that is able to observe (sniff) an active TCP connection can create
counterfeit RST packets and terminate a flow

IPP Lecture 8 - 15

Kernel data associated with a TCP connection

Kernel data structure associated with socket descriptor for active TCP
connection (/usr/src/linux/include/net/sock.h)

– Send and receive buffers and control info
– Sliding window control info (left edge, right edge)
– Send and ACK sequence numbers (last sent, last ACKd)
– State info (SYN-sent, ESTABLISHED, etc.)
– Option info (nagle, so_reuse, etc)
– Timer info, retry counters etc.
– RTT variables
– Urgent pointer stuff
– Congestion control info (cwnd, ssthresh) … later

IPP Lecture 8 - 16

TCP flow control

TCP has two algorithms for throttling the sender
– Flow control – end-to-end sliding window protocol to keep sender from

overruning the receiver
– Congestion control – algorithm(s) for socially acceptable behavior on the net

TCP flow control
– Sliding window size (bytes) provided in TCP header (16 bits)
– Initial window size from RCVBUF size of socket
– Window size can shrink and grow as receiver consumes incoming bytes
– TCP assures that sender never has more than N unacknowledged bytes “in

flight”, where N = min(advertised window, sender’s SNDBUF size)

© Kurose

IPP Lecture 8 - 17

SNDBUF RCVBUF

TCP sender’s SNDBUF holds unsent and/or unacknowledged bytes
– As bytes are acknowledged, the left edge slides to the right
– If a packet is lost, the timeout, causes a retransmission from data in the

SNDBUF
– If the receiver’s advertised window is 0 and the SNDBUF is full, write()’s

block

TCP receiver’s RCVBUF holds bytes unread by the application or out-
of-order bytes following “missing” bytes from lost packet(s)

– RFC 793 says nothing about receiver having to retain out of order data, but
most implementation do today

– Receiver only ACK’s last byte of “contiguous” data received
– If receiver application is not reading data, advertised window can go to 0

© Kurose IPP Lecture 8 - 18

Next time …

Performance tools

