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Reliable streams

z How to build a transport protocol that provides a reliable stream of 
bytes on top of IP?

z IP is based on datagrams
– Not circuit-based
– Not a stream of bits

z IP is a best-effort protocol,  packets can be
– Mangled (bit errors)
– Delayed
– Duplicated
– Arrive out of order
– lost
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Building a stream on top of packets

z Application writes or reads a sequence of bytes
– Pointer to start of user data
– Length of data

z Transport protocol for sender must divide the user data into a sequence 
of packets (roughly MTU sized), and send each packet to the receiver

– Since the data to be sent may not  be a multiple of MTU, each packet 
should carry a length field.

z At the receiver, the protocol just needs to pass each packet up to the 
application’s read() and provide the length to the application.

– Application may have to do multiple read’s to collect all the bytes
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Building a reliable stream

z For reliability, protocol must
– Let the sender know that receiver received the packet

z Our protocol needs an acknowledgement (ACK) packet
– Insure that packets received have no errors 

z So our protocol must add a checksum or CRC to each packet
z Sender must calculate the checksum for each packet and append to

packet.  So now we have a packet header with a CRC
z Receiver must re-calculate the checksum on each packet and 

compare.  If checksum fails, receiver needs to inform the sender.  We 
can do this with a negative acknowledgement (NAK) packet.

z If sender receives an ACK, then send the next packet.  If NAK is
received, retransmit the last packet

z What if ACK or NAK packets get mangled (probably need our 
checksum for these packets as well)? 

– If sender receives mangled ACK/NAK, just re-transmit last 
segment until good ACK received.
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Stop-and-wait
z So far, we have a stop-and-wait protocol based on ACK’s and NAK’s

– Send a data packet, wait til ACK or NAK arrives
– If NAK arrives, re-send packet.
– If ACK arrives, send next packet

z What if network duplicates one of the ACK packets?
– Sender could think last packet was received OK, when in fact what arrived 

first was a duplicate of the previous ACK …
– Also a problem if a data packet is duplicated.  Receiver would think it’s the 

next packet, but it’s not!
– We should add a packet number to our protocol that accompanies each 

packet and is included in the ACK/NAK
– Receiver should always ACK the packet number, even for duplicate data 

packets.

z Our packet header consists of
– Type (data, ACK, NAK)
– Packet number
– Packet length
– checksum IPP Lecture 7 - 6

Handling packet loss
z What if data packet is lost?

– Receiver never sends ACK/NAK, sender waits forever /

z What if ACK or NAK is lost?
– Sender waits forever /

z Sender needs a timer
– After sending packet, sender sets a timer
– If the timer expires before ACK/NAK arrives, then resend data packet
– If ACK/NAK arrives, cancel timer.
– How long to wait?

z Ideally round-trip time, but that can vary, and we may not know what 
RTT is.  So often pick something “long enough” – 3 seconds?

– Note if ACK was lost, receiver will get a duplicate packet, but our packet 
number in the header will allow him to discard already accepted packets.  
Receiver must ACK such duplicate packets.

– What if ACK was delayed and  arrives shortly after we retransmitted? Too 
bad, packet is already in flight, we can’t zap it.  Sender will eventually 
receive another ACK for duplicated packet.  Sender just ignores duplicate 
ACK’s for packets that have already been ACK’d
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Our reliable protocol
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• What is the data rate of our protocol? 

one packet/RTT 

Example:

packet size:  1000 bytes (8000 bits)  

100 mbs path, RTT 40 ms

data rate =  8000/0.04 =  200 kbs

path utilization  0. 2/100 == 0. 2% 

this is poor, even for government work.

Utilization gets worse with longer RTT!

IPP Lecture 7 - 8

Pipelining our protocol

z Stop-and-wait data rate == packetsize/RTT
– Could use bigger packet size to improve data rate (MTU limited?)
– Alter speed of light to make RTT smaller ☺

z Improve data rate by allowing sender to initially send N packets
– Potentially improve data rate by factor of N (up to link bandwidth)

z Cost:
– Sender and receiver both need N packet buffers
– ACK/NAK handling more complex

z Which packets have been ACK’d, which are in flight
z Current left edge of window

z Sender needs N packet buffer because, packets may need to be 
retransmitted if NAK or lost

z Receiver needs to buffer packets in case left edge packet is lost.  Since 
it’s a byte stream, can’t pass data to application if there are holes

– Example: packets 1 and 2 arrive and are passed to application.  Packets 4, 
5, and 6 arrive (but not 3), receiver must buffer these til sender times out 
and resends packet 3.
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Sliding window protocol

z Sender sends a new packet only if left edge packet ACK’d, otherwise 
receiver could need infinite receive window. 

z Sender still needs timer.  If timer expires and left edge packet has not 
been ACK’d, resend left-edge packet and restart timer.  When left edge 
ACK packet received by sender, move left edge (slide window) to next 
un-ACK’d packet, send that many more new packets, and restart timer.

z For bulk transfers (ftp) window will fill, for interactive sessions (ssh), 
usually only one packet sent before application awaits reply

© Kurose
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How big a window?

z N=1, it’s our stop-and-wait protocol, performance sucks – worsens with 
RTT

z Ideally, choose N  based on  path bandwidth and path delay
– The bandwidth-delay product

z If path bandwidth is 100 mbs and RTT is 10 ms, bandwidth delay 
product is   100 * .01  megabits = 1 million bit buffer.  With packet size 
of 8,000 bits, want N to be  125 packets (125 Kbytes)

z If RTT is 100 ms, N needs to be  1250 packets (1.2 Mbytes)
z RTT 100 ms and GigE (1000 mbs) path, need 12 Mbytes of buffer!

z Alas, this value will vary for each pair of hosts and current route (RTT)
– We don’t usually know either RTT or path bandwidth
– Most applications just take the OS default  (like 32 KB)
– In TCP, SNDBUF and RCVBUF define window values 

z On wide-area links, the window size is usually the performance 
bottleneck!!  We’ll have lots more to say about the bandwidth-delay 
product
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Starting and stopping our reliable stream protocol

z How does receiver know sender has sent the last packet?
– Need another packet type, CLOSE

z Needs to be checksum’d and reliable
z Needs to be ACK’d by other end,  CLOSE-ACK
z need a CLOSE-ACK  ACK  (CLOSE-ACK2)

– When CLOSE-ACK2 received, that end can close
– After sending CLOSE-ACK2, close.

z Need a startup (connect/accept-refuse) protocol to establish 
“connection” (allocate buffers, initialize state, e.g., packet counters)

– Need HELLO packet type
– If receiver is listening, replies with HELLO-ACK  packet, or if no application  

listening, responds with HELL-NO packet

z HELLO packet causes listener to allocate buffers, initialize state, etc.

z CLOSE allows both ends to release resources (buffers, state info)
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Reliable stream protocol summary

z Our protocol specifies how to open/close a connection and how to send 
and acknowledge packets.  The sender uses a timer.

z Our packet header:
– Type (HELLO, HELLO-ACK, HELL-NO, CLOSE, CLOSE-ACK, CLOSE-

ACK2, DATA, ACK, NAK)
– Packet length
– Packet number
– Checksum

z Sliding-window implementation requires buffers at both ends

z Finite state machine defines transitions for open/established/close
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Reliable stream finite state machine

HELLO recvd

listen
HELLO sent

established CLOSE recvd

CLOSE sent

closed

recv: HELL-NO

send: HELLO

recv: HELLO

send: HELLO-ACK

recv:  data

recv: CLOSE-ACK

send: CLOSE-ACK2

recv: HELLO-ACK

recv:  CLOSE

send: CLOSE_ACK

recv: CLOSE_ACK2

send: CLOSE
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Animations

z ACK protocols are self-clocking ANIMATION (ns simulations)

z ACK protocols adapt to changing available bandwidth ANIMATION
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1 mbs

10 ms

1 mbs

10 ms

0.2 mbs

40 ms

Queue size: 
50 pkts

window size: 
20 pkts

What would happen if queue size was only 10 pkts ?

4

3

0 1 2

All links 1 mbs, 10 ms

Queue size: 
100 pkts

window size: 
20 pkts

window size: 
20 pkts

0 transmits to 4, 
later 3 sends to 4, 
3 finishes
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Extending our protocol

z To support multiple applications on a host, our protocol needs a source 
and destination port number in the packet header

z Our protocol is flawed.  The ACK from the receiver says the transport 
protocol has received the packet, BUT the application may not be ready 
to read the data from the OS.  We need to stop the sender if the
receiver application has not drained the receive buffer.  We need flow 
control.

z Our protocol header will be extended with an “available window” field.
– Starts out as size of receive buffer
– Receiver updates it to reflect available space

z If receiving application is not reading data from net buffer, the available 
window could shrink to  0.  As application reads data, window will re-
open.

– Sender inspects “available window” in each ACK packet from the receiver 
and insures that it does not send more packets than the available window 
allows.
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Our protocol vs TCP

z TCP provides a reliable stream on top of IP
– Uses timers, sequence numbers, checksum, ACK, sliding window, flow 

control, congestion control

z TCP differs from our protocol
– We count packets, TCP counts bytes
– TCP is bidirectional, byte counters for both directions
– TCP uses cumulative ACKs, no NAKs (more later)
– TCP tries to estimate an appropriate timeout value from observed RTT
– TCP provides an out-of-band delivery (URGENT)
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TCP header
0                   1                   2                   3   
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|          Source Port          |       Destination Port        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                        Sequence Number                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Acknowledgment Number                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Hdr |           |U|A|P|R|S|F|                               |
| length| Reserved  |R|C|S|S|Y|I|            Window             |
|       |           |G|K|H|T|N|N|                               |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|           Checksum            |         Urgent offset         |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                    Options                    |    Padding    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                             data                              |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Usually 5 32-bit words, but options used on initial connect.
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TCP header C struct
/usr/include/netinet/tcp.h

struct tcphdr {

u_short th_sport;               /* source port */

u_short th_dport;               /* destination port */

tcp_seq th_seq;                 /* sequence number */

tcp_seq th_ack;                 /* acknowledgement number */

#ifdef _BIT_FIELDS_LTOH

u_int th_x2:4,                /* (unused) */

th_off:4;               /* data offset */

#else

u_int th_off:4,               /* data offset */

th_x2:4;                /* (unused) */

#endif

u_char th_flags;

#define TH_FIN  0x01

#define TH_SYN  0x02

#define TH_RST  0x04

#define TH_PUSH 0x08

#define TH_ACK  0x10

#define TH_URG  0x20

u_short th_win;                 /* window */

u_short th_sum;                 /* checksum */

u_short th_urp;                 /* urgent pointer */

};
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TCP header fields
z 16-bit source and destination ports

z 32-bit sequence number, byte number of first data byte in packet

z 32-bit ACK number, byte number +1 of last data byte received

z 4-bit Hdr length number of 4-byte words in header

z FLAGS
– URG   urgent byte (MSG_OOB) coming, urgent offset valid 
– ACK   ack of data up to ack number
– PSH   all data in buffer sent, push data up to application (meaningless)
– RST   reset, no port or service aborted
– SYN   synchronize, start connection  (connect())
– FIN   finish, end connection       (close())

z window, space available in my receive buffer (initially, SO_RCVBUF)

z checksum over TCP pseudo header and data

z 16-bit urgent offset of byte of urgent data within stream (added to seq. 
number)

IPP Lecture 7 - 20

TCP header notes

z URG flag and offset allow application to insert one byte of “out of band”
data.  Receiving application can be notified with signal() or other 
mechanisms to retrieve the byte “out of order” – e.g., to send a ctrl-c 
ahead of a bunch of keystrokes in the buffer.  NOT really used, API is 
messy.

z TCP options   | type | length | value  |
– Header length normally 5 words
– negotiated in SYN sequence
– variable number of options, padded to 4-byte boundary with no-ops
– newer options, both sides must support
– 1-byte type code

Type
0      end of list
1      no-op
2      len(4),MSS (2 bytes)    max segment size
3      len(3),shiftcount          window scale factor
4     len(2 ) permitted           selective ACK (experimental)
8     len(10),timestamp(4),timestamp(4)    timestamp

2 4

108

MSS

timestamp timestamp

IPP Lecture 7 - 21

TCP ACKs and sequence numbers

z No NAKs

z Data is numbered by bytes, not 
packets

z Number is unsigned and wraps!

z Bidirectional, so sequence/ACK 
numbers for both ends

z Sequence number of first byte in 
packet

z ACK number of last good 
contiguous byte received (+ 1)

z Initial segment number established 
at connect/accept

– Start with new number (+128 or 
random) for each new connection!

– Does NOT start at 0 (avoid earlier 
incarnations)

© Kurose
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Lost packets and cumulative ACK

z If packet arrives out of order, (e.g. lost 
packet), ACK number+1 of last good 
contiguous byte received (not in RFC 793)

z When lost packet arrives, receiver sends a 
cumulative ACK, ack’ing all the good bytes 
in its buffer 

– not in original RFC 793
– Receiver could discard out of order data, 

have go-back-N protocol

z Good news: ACKs can be lost and next 
ACK can advance sender

z Bad news: duplicate ACKs during loss 
period conveys little information about 
packets that have arrived

– Case 1: broken connection, no ACKs arrive
– Case 2: lost packet, duplicate ACKs arrive

timeout

Sending 1000 byte packets

lost

S 21   A 6144

S 2144   A 22

S 3144   A 22

S 4144   A 22

S 5144   A 22

S 3144   A 22

S 21   A 3144

S 21   A 3144

S 21   A 3144
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Establishing a TCP connection

z Uses 3-way handshake

z Client connect() sends SYN packet with 
initial sequence number (new/random)

– Need new number to avoid old packets 
for same 5-tuple

– SYN for SYNchronize end points

z Server replies with ACK and its own 
SYN and its new sequence number

z Client ACKs server’s SYN

z Connection established, send/receive 
buffers allocated

z If no reply, connect() times out after 
exponential backoff/retry

z If port unavailable, server sends RST
© Kurose
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Closing a TCP connection

z Application issuing close (active) send FIN

z Other end (passive) ACKs FIN 
– FIN causes EOF on reads/writes
– Application eventually closes, issuing a FIN

z Active end ACKs FIN and waits …
– 2* maximum segment lifetime (30, 60 120s?)
– Waiting for delayed packets?
– Can’t re-use port for that period

z Socket option SO_REUSEADDR
z netstat –a  (FIN_WAIT2)

z close() waits til packets in flight are handled
– shutdown() for immediate close

z ctrl-c a net application and OS handles close
© Kurose
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Variations on close
z close() returns immediately 

– no more sends/recvs; send buffer sent, then FIN sent

z SO_LINGER socket option effects behavior of close()
/usr/include/sys/socket.h

struct linger {
int l_onoff;                /* option on/off */
int l_linger;               /* linger time */
};

z l_onoff=0 -- default close

z l_onoff=1 and l_linger =0 -- connection aborted (RST), data discarded

z l_onoff=1 and l_linger =N -- process waits til all data sent and ACK'd, or 
until the timer (N) expires  (N secs or .01 secs)

z shutdown() with SHUT_RD 
– recvd data discarded, can still send 

z shutdown() with SHUT_WR 
– no more sends, can still recv, send buffer sent, then FIN

z be sure parent and child have closed socket
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TCP data transfer protocol

z TCP uses sliding window protocol

z Initial window (usually) set from size of RCVBUF

z Header includes “available window” field

z Sender can have no more bytes in flight than minimum of sender’s 
SNDBUF or receiver’s current available window

z In-order bytes are ACKed, ACK can piggy-back on return data (best)

z Sender has retransmit timer
– Multiple timeouts on same packet – exponential backoff (not in RFC 793)

z If receiver application is not reading data, window can go to zero
– If no data to be sent by receiver, it has no way of telling sender window is 

open again
– Sender must send window probes to receiver! (example later)
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TCP 3-way handshake
DENEB.1055 > ACHERNAR.discard: S 732608000:732608000(0)

win 8192 <mss 1460>

4500 002c c4f2 0000 3c06 fbfd 80a9 5e4a

80a9 5e3f 041f 0009 2baa b600 0000 0000

6002 2000 d477 0000 0204 05b4

ACHERNAR.discard > DENEB.1055: S 728320000:728320000(0)

ack 732608001 win 8192 <mss 1460>

4500 002c f742 0000 3c06 c9ad 80a9 5e3f

80a9 5e4a 0009 041f 2b69 4800 2baa b601

6012 2000 60fd 0000 0204 05b4

DENEB.1055 > ACHERNAR.discard: . ack 1 win 8192

4500 0028 c4f3 0000 3c06 fc00 80a9 5e4a

80a9 5e3f 041f 0009 2baa b601 2b69 4801

5010 2000 78ba 0000

IP proto 6: TCP

TCP option: 2, MSS

Window: 8192 (2000 hex)

ports

cksum

IPP Lecture 7 - 28

MSS and path MTU discovery  (sidebar)
z TCP tries to avoid IP fragmentation

– Transport layer worrying about network/link layer issues /
– Actually, there is application layer access socket option TCP_MAXSEG

z RFC 793 specified each end could provide the max segment size they 
would accept (MTU – IP/TCP header = 40 )

– If no MSS option, sender must use 536 byte segments
– Of course, today, intervening links may have smaller MTU’s

z RFC 1191 proposed “path MTU” discovery
– When full size datagram goes out, set DF IP bit (don’t fragment)
– If router needs to fragment, it’s “supposed” to send back ICMP saying what 

its MTU is
– Sender OS adjusts MSS (or at least turns off DF)
– Cool if OS caches MTU info for path (typically in local routing table)
– TROUBLE: routers don’t do it right, firewalls block ICMP – result black hole

z You can ping remote and send small packets, but if you try to send big 
packets with DF, they disappear.  OS should try with DF off

z Maybe configure your OS to disable pMTUd
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Packet size distribution

1500 bytes

576 default MSS

40 bytes – ACKs
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Next time …

z TCP finite state machine

z Performance monitoring

z Assignments 3 and 4


