
Internet Programming & Protocols
Lecture 5

UDP internals

UDP applications

DNS DHCP ntp

IPP Lecture 5 - 2

Internet design

Internet Engineering Task Force (IETF)
– International community of network designers, operators, vendors, and

researchers (started 1986)
– Concerned with evolution of the Internet architecture
– Concerned with smooth operation of the Internet
– Composed of many working groups (ietf.org)
– See RFC 1360

Request for Comment (RFC)
– Technical and organizational notes about the Internet (since 1969)
– Describe protocols, procedures, programs, and concepts
– Official specs of the Internet as approved by IETF

MAY, MUST, SHOULD and NOT
RFC 1149 (CPIP -- carrier pigeon internet protocol)

"The IETF already has more than enough RFCs that codify the obvious, make
stupidity illegal, support truth, justice, and the IETF way, and generally
demonstrate the author is a brilliant and valuable Contributor to The Standards
Process"

IPP Lecture 5 - 3

User Datagram Protocol (UDP)

Defined in RFC 768

connectionless (datagram)

Lightweight – good for query/response

16-bit port (service number)
– echo(7), DNS(53), bootp(68),ntp(123), snmp(160), NFS, RPC,netbios(137)
– Streaming applications (audio video), losing a few packets OK

unreliable (lost, damaged, duplicated, delayed, out of sequence)
– Same reliability as IP
– If you want reliable UDP, application (YOU) must provide it!

Can do broadcast and multicast with UDP

Many of the original well-known ports are odd numbers. NCP, TCP/IP predecessor,
required two port numbers for a service.

IPP Lecture 5 - 4

Socket syntax and semantics

Syntax: struct’s, casts, pointers, call by reference, call by value

Semantics: order, error returns, blocking, completion, effect

sockfd = socket(AF_INET, SOCK_DGRAM, 0)

err = bind(sockfd, (struct sockaddr *) &serv_addr, sizeof(serv_addr))

lth = sendto(sockfd, sendline, n, 0, pserv_addr, servlen)

lth = recvfrom(sockfd, recvline, MAXLINE, 0, &from, &fromlen);

err = getsockname(sockfd, (struct sockaddr *) &cli_addr, &clilen);

A “connection” (flow or socket) is a full-duplex 5-tuple

{source address, source port, destination address, destination port, protocol}

IPP Lecture 5 - 5

UDP header
0 7 8 15 16 23 24 31

+--------+--------+--------+--------+

| Source Port | Destination Port|

+--------+--------+--------+--------+

| Length | Checksum |

+--------+--------+--------+--------+

| data octets . . .

8-byte header
16-bit port number
Length is number of bytes of UDP data and header
Simple 16-bit checksum over pseudo header and data (optional!)
0 or more bytes of data (max is controlled by SO_SNDBUF)

– How many bytes to send a bit?

If length is bigger than MTU, IP will fragment
– NFS likes to use BIG datagrams

struct udphdr {
__u16 source;
__u16 dest;
__u16 len;
__u16 check;

};

IPP Lecture 5 - 6

UDP checksum
16-bit checksum (RFC 1071)

– End-to-end data integrity check
Calculated at sender
Verified at destination

– 1s complement of sum of 16-bit words of pseudo-header prepended to UDP
header and data

Pseudo header: IP addresses, IP proto, and UDP length (RFC 768)
– Any overflow wrapped around
– Same algorithm for IP and TCP checksum

Why bother? (NFS often disables it for speed)
– Link layers have CRC’s etc.
– BUT, could be errors in router’s memory, or one of the links may not have

adequate error detection

If checksum fails, packet is usually dropped (silently)
– Kernel may keep a counter

0 proto UDP lth
destination address

source address

IPP Lecture 5 - 7

UDP sockets

OS allocates send and receive buffer for each UDP socket

Default buffer sizes vary by OS/release

Receive buffer will hold incoming packets til application reads them
– Silently dropped if buffer is full
– Though OS may count overflows (netstat –s)

Send buffer controls max UDP datagram and can buffer outgoing
datagrams (watch out for bogus timings on transmit side)

Program can retrieve current buffer sizes with getsockopt()

program can set buffer sizes with setsockopt()
– SO_RCVBUF SO_SNDBUF
– To send lots of data with UDP, application needs to send() lots of datagrams

setsockopt() SO_NO_CHECK can disable UDP checksums

If UDP packet arrives for an “inactive” port, OS sends back ICMP “port
unreachable”. If sender is using connect(), next recvfrom() will “fail”

IPP Lecture 5 - 8

Socket options

modify socket characteristics, maybe improve performance!

setsockopt(), getsockopt()

must refer to open sockfd, issue before connect/bind
#include <sys/socket.h>

getsockopt(fd, level, optname, void *val, int *len)

setsockopt(fd, level, optname, void *val, int len)

level specifies SOL_SOCKET, IPPROTO_IP, IPPROTO_TCP,
IPPROTO_IPV6

val can be varying type depending on option, hence len field needed too

IP options: IP_HDRINCL, IP_OPTIONS, IP_TOS, IP_TTL and options for
managing multicast

UDP: SO_BROADCAST, SO_RCVBUF, SO_SNDBUF, SO_NO_CHECK

TCP: later …

IPP Lecture 5 - 9

sockopt.c
#include <sys/types.h>

#include <sys/socket.h> /* for SOL_SOCKET and SO_xx values */

main()

{
int sockfd, maxseg, sendbuff, optlen;

if ((sockfd = socket(AF_INET, SOCK_STREAM, 0)) < 0)
perror("can't create socket");

if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF,&sendbuff, &optlen) < 0)
perror("SO_SNDBUF getsockopt error");

printf("send buffer size = %d\n", sendbuff);
sendbuff = 16384; /* just some number for example purposes */
if (setsockopt(sockfd, SOL_SOCKET, SO_SNDBUF,&sendbuff, sizeof(sendbuff)) < 0)

perror("SO_SNDBUF setsockopt error");
optlen = sizeof(sendbuff);
if (getsockopt(sockfd, SOL_SOCKET, SO_SNDBUF,&sendbuff, &optlen) < 0)

perror("SO_SNDBUF getsockopt error");
printf("send buffer size = %d\n", sendbuff);

}

IPP Lecture 5 - 10

UDP on the net

UDP applications are lightweight (compared to TCP)
– Query/response
– May not matter if no response (don’t care if packets are lost)
– Can implement on small devices (toaster) or little OS (booting)
– ntp, syslog, snmp, rpc

Streaming (video audio), a few dropped packets don’t matter

Take advantage of local broadcast or multicast (DHCP)

IPP Lecture 5 - 11

Network Time Protocol (NTP)

UDP protocol to request time from another host (RFC 1305)

Requester measures roundtrip delay (hopes route is symmetric)

NTP adjusts your machine’s time AND clock frequency

Accuracies can be within a few milliseconds!

Protocol specifies format of time request/reply, encoding of time etc.

160.36.58.221.32889 > 160.91.192.246.123: v1 client strat 0 poll 0 prec 0 (DF)

4500 004c 9880 4000 4011 65cd a024 3add

a05b c0f6 8079 007b 0038 1749 0b00 0000

0000 0000 0000 0000 0000 0000 0000 0000

0000 0000 0000

160.91.192.246.123 > 160.36.58.221.32889: v1 server strat 1 poll 0 prec -19

4500 004c 7e4d 0000 f911 0700 a05b c0f6

a024 3add 007b 8079 0038 e346 0c01 00ed

0000 0000 0000 0000 4750 5300 c6b5 89d8

0000 0000 c6b5

IPP Lecture 5 - 12

NTP protocol header and timestamp formats

Strat PollLI ModeVN

NTP v3 and v4

Root Delay
Root Dispersion

Reference Identifier
Reference Timestamp (64)

Originate Timestamp (64)

Receive Timestamp (64)

Transmit Timestamp (64)

Message Hash (64 or 128)

NTP Protocol Header Format (32 bits)
LI leap warning indicator
VN version number (4)
Strat stratum (0-15)
Poll poll interval (log2)
Prec precision (log2)

Seconds (32) Fraction (32)
NTP Timestamp Format (64 bits)

Value is in seconds and fraction
since 0h 1 January 1900

Key/Algorithm Identifier

Cryptosum

Authenticator
(Optional)

Extension Field 1 (optional)

Extension Field 2… (optional)

NTP v4 only

Prec

Extension Field
(padded to 32-bit boundary)

Field Length Field Type
NTPv4 Extension Field

Last field padded to 64-bit boundary

authentication only

IPP Lecture 5 - 13

UDP syslog

syslog request from a C program (results in a UDP packet to port 514)
C code

openlog("tomtest",LOG_PID,LOG_MAIL);
syslog(LOG_AUTH|LOG_NOTICE,"sys log test auth/notice");

tcpdump -x -s 256 port 514

08:00:02.557018 thistle.syslog > thdsun.syslog: udp 44

4500 0048 341d 0000 4011 1d74 86a7 0f0c E..H4...@..t....

86a7 0cba 0202 0202 0034 6db4 3c33 373e 4m.<37>

746f 6d74 6573 745b 3937 3833 5d3a 2073 tomtest[9783]: s

7973 206c 6f67 2074 6573 7420 6175 7468 ys log test auth

2f6e 6f74 6963 650a /notice.

Sometimes payload is human readable

IPP Lecture 5 - 14

Our UDP client /server
160.91.212.75.32834 > 160.36.58.221.7654: UDP, length 20

0x0000: 0009 1228 e9ca 0006 5bdc 88a7 0800 4500 ...(....[.....E.

0x0010: 0030 0005 4000 4011 eb0f a05b d44b a024 .0..@.@....[.K.$

0x0020: 3add 8042 1de6 001c 4fd6 6361 6e20 796f :..B....O.can.yo

0x0030: 7520 6865 6172 206d 6520 6e6f 770a u.hear.me.now.

160.36.58.221.7654 > 160.91.212.75.32834: UDP, length 20

0x0000: 0006 5bdc 88a7 0009 1228 e9ca 0800 4500 ..[......(....E.

0x0010: 0030 0000 4000 3a11 f114 a024 3add a05b .0..@.:....$:..[

0x0020: d44b 1de6 8042 001c 1cf4 6361 6e20 796f .K...B....can.yo

0x0030: 7520 6865 6172 206d 6520 6e6f 770a u.hear.me.now.

IPP Lecture 5 - 15

strace

strace traces the system calls that a process makes
– strace udpserver
– Can also start strace on a running process to see what it’s doing strace -ppid

strace of our UDP client/server
Client

strace -p 19690

Process 19690 attached - interrupt to quit

read(0, "can you hear me now\n", 1024) = 20

sendto(3, "can you hear me now\n", 20, 0, {sa_family=AF_INET, sin_port=htons(7654),
sin_addr=inet_addr("160.36.58.221")}, 16) = 20

recvfrom(3, "can you hear me now\n", 512, 0, {sa_family=AF_INET, sin_port=htons(7654),
sin_addr=inet_addr("160.36.58.221")}, [16]) = 20

write(1, "can you hear me now\n", 20) = 20

read(0,

Server

recvfrom(3, "can you hear me now\n", 8192, 0, {sin_family=AF_INET,
sin_port=htons(32834), sin_addr=inet_addr("160.91.212.75")}}, [16]) = 20

sendto(3, "can you hear me now\n", 20, 0, {sin_family=AF_INET, sin_port=htons(32834),
sin_addr=inet_addr("160.91.212.75")}}, 16) = 20

recvfrom(3,

IPP Lecture 5 - 16

NFS

160.36.58.221.800 > 160.36.56.227.2049: 116 read [|nfs] (DF)

4500 0090 0000 4000 4011 8654 a024 3add

a024 38e3 0320 0801 007c 551d deaa 7034

160.36.56.227.2049 > 160.36.58.221.800: reply ok 1472 read [|nfs] (frag 50426:1480@0+)

4500 05dc c4fa 2000 4011 dc0d a024 38e3

a024 3add 0801 0320 7088 2b02 deaa 7034
160.36.56.227 > 160.36.58.221: (frag 50426:1480@1480+)

4500 05dc c4fa 20b9 4011 db54 a024 38e3

a024 3add 5e30 dbcc c3c9 0416 38a0 4c09

160.36.56.227 > 160.36.58.221: (frag 50426:1480@2960+)

4500 05dc c4fa 2172 4011 da9b a024 38e3

a024 3add 58f1 b810 547b 785d c351 1504

...

160.36.56.227 > 160.36.58.221: (frag 50426:1480@26640+)

4500 05dc c4fa 2d02 4011 cf0b a024 38e3

a024 3add d352 5900 e408 0070 12a1 0d1f

160.36.56.227 > 160.36.58.221: (frag 50426:688@28120)

4500 02c4 c4fa 0dbb 4011 f16a a024 38e3

a024 3add 38d4 a987 8602 357b 408f 18c7

•Read a remote file, big (28808) NFS datagrams (frags)

IPP Lecture 5 - 17

fragmentation

Fragmentation is good
– Hides sizing from upper layers
– Sending large chunks simpler (faster?) for application
– Use biggest MTU over as many hops as possible

Fragmentation is bad
– Causes inefficient use of resources (bandwidth, re-assembly)
– Fragment loss is costly – original “big” datagram must be re-sent
– Re-assembly is hard (buffer management, timers, out of order)

Avoid fragmentation if you can
– TCP tries hard not to fragment (MSS negotiation) … later
– MTU discovery can assist (though this is slow and complex too) …later

Bigger MTU’s are better, but tied to engineering of physical/link layer

IP spec: host must accept at least a 576-byte datagram (min MTU)

IPP Lecture 5 - 18

fragmentation attack – who would’ve known

teardrop attack (’97)

Hackers send IP fragments with funky offsets

Some OS’s (who shall not be named) went belly up

Did you write that packet re-assembly code?

IPP Lecture 5 - 19

Dynamic Host Configuration Protocol (DHCP)

Rather than statically configuring network info on your PC (IP address,
net mask, broadcast address, default router, DNS servers), DHCP can
do it automatically

– Makes it easier to move machines
– Easier for central management
– Can assign same address each time, or conserve IP addresses by

assigning from a pool of addresses on the local subnet

Lightweight UDP protocol (ports 67 and 68)
– When machine boots not much of an OS running, so simple protocol is

needed
– Booting PC broadcasts a DHCP request
– DHCP server hears the request and replies with config info

Specs in RFC 2131
– Format of packets
– Request/reply semantics

DISCOVER, OFFER, REQUEST, ACK, RELEASE

IPP Lecture 5 - 20

DHCP
tcpdump –e –x

0:11:43:70:35:5b Broadcast ip 342:
0.0.0.0.bootpc > 255.255.255.255.bootps:
xid:0x3077b440 [|bootp] [tos 0x10]

4510 0148 0000 0000 1011 a996 0000 0000

ffff ffff 0044 0043 0134 1412 0101 0600

3077 b440 0000 0000 0000 0000 0000 0000

0000 0000 0000 0000 0011 4370 355b 0000

0:20:78:d9:3a:3f Broadcast arp 60: arp who-
has pc102 tell linksys

0001 0800 0604 0001 0020 78d9 3a3f c0a8

0101 0000 0000 0000 c0a8 0166 0000 0000

0:20:78:d9:3a:3f Broadcast ip 590:
linksys.bootps > 255.255.255.255.bootpc:
xid:0x3077b440 Y:pc102 ether
0:11:43:70:35:5b [|bootp]

4500 0240 000c 0000 4011 b6f8 c0a8 0101

ffff ffff 0043 0044 022c d615 0201 0600

3077 b440 0000 0000 0000 0000 c0a8 0166

0000 0000 0000 0000 0011 4370 355b 0000

Why is reply broadcast?

IPP Lecture 5 - 21

Broadcast nasties

Luckily you can’t broadcast to ALL
internet hosts (255.255.255.255) ☺
BUT you can broacast (UDP or ICMP) to
all hosts on a local subnet
(128.214.255.255)

– Handy for broadcasting time
– Or DHCP
– But can be abused (UDP echo, port 7) or

ICMP ping (smurf attack)

SMURF attack
Hacker on his slow dial up connection, sends
ICMP echo with broadcast destination (preferably
of a net with high speed link).
Source address is spoofed and is the target
of the flood of ICMP replies from the destination net.
If the target net has a slow link, then
whole target subnet may be slowed.
Hackers like these high-leverage attacks:
they send one packet and generate lots of nasty
traffic.

Hackers also use broadcast ICMP echo (with
a legit source address) to try and map active
hosts on a destination net. (ping)

-routers can (should) block inbound broadcasts

T broadcast echoA

T

net

IPP Lecture 5 - 22

Domain Name Service (DNS)
Host tables (/etc/hosts) too big 1984

RFC 1034 defines distributed domain name system
– Defines message formats
– Request/reply semantics
– UDP (mostly) port 53

You can buy a domain name and have it registered

Domain name server hierarchy consists of
– Root servers (IP addresses hardwired into your local servers)
– Top Level Domain Servers (TLD), e.g. for .com and for .edu
– Authoritative servers
– Local servers (maybe on your own machine or dept. engine, UNIX named)

during net config, you tell your machine where local servers are
On UNIX IP addresses of local name servers in /etc/resolv.conf

– Or indirect through Sun yp
– Windows network config info (or provided by DHCP)

API gethostbyname() gethostbyaddr() DNS packets are sent out

IPP Lecture 5 - 23

Root servers

IPP Lecture 5 - 24

DNS query

This can be slow!
– Propagation delay for each path
– Busy-server delays
– Secondary-servers failsafe-ish

Timeout try another
If your server list is bad, net
appears “down”

Local servers can cache replies
– Cache entries timeout so they

can be refreshed

Use UNIX dig command to
explore

IPP Lecture 5 - 25

dig
dig pcgiga.cern.ch

; <<>> DiG 9.2.0 <<>> pcgiga.cern.ch

;; global options: printcmd

;; Got answer:

;; ->>HEADER<<- opcode: QUERY, status: NOERROR, id: 57289

;; flags: qr rd ra; QUERY: 1, ANSWER: 1, AUTHORITY: 6, ADDITIONAL: 0

;; QUESTION SECTION:

;pcgiga.cern.ch. IN A

;; ANSWER SECTION:

pcgiga.cern.ch. 10800 IN A 192.91.245.29

;; AUTHORITY SECTION:

cern.ch. 10800 IN NS ns2.cern.ch.

cern.ch. 10800 IN NS dxmon.cern.ch.

cern.ch. 10800 IN NS sunic.sunet.se.

cern.ch. 10800 IN NS ccpnvx.in2p3.fr.

cern.ch. 10800 IN NS ns-sec.ripe.net.

cern.ch. 10800 IN NS scsnms.switch.ch.

;; Query time: 279 msec

;; SERVER: 160.36.56.73#53(160.36.56.73)

;; WHEN: Tue Aug 23 16:04:17 2005

;; MSG SIZE rcvd: 200

IPP Lecture 5 - 26

DNS packets
0.621362 manitou.32769 >

ns01.knoxville.tn.knox.comcast.net.domain: 6257+ A?
pcgiga.cern.ch. (32) (DF)

4500 003c 3373 4000 4011 615d c0a8 0104

442f a005 8001 0035 0028 a61a 1871 0100

0001 0000 0000 0000 0670 6367 6967 6104 …pcgiga.

6365 726e 0263 6800 0001 0001 cern.ch

0.739407 ns01.knoxville.tn.knox.comcast.net.domain >
manitou.32769: 6257* 1/6/9 A pcgiga.cern.ch (382)
(DF)

4500 019a cef9 4000 fc11 0878 442f a005

c0a8 0104 0035 8001 0186 5238 1871 8580

0001 0001 0006 0009 0670 6367 6967 6104

6365 726e 0263 6800 0001 0001 0670 6367

6967 6104 6365 726e 0263 6800 0001 0001

0000 2a30 0004 c05b f51d c027 0002 0001

0000 7b85 0011 0663 6370 6e76 7805 696e

3270

Note: 100+ ms delay

IPP Lecture 5 - 27

Hackers and DNS
DNS servers and core routers are critical infrastructure of Internet

– Denial of service attacks (packet flooding)
– Breaking in to server to re-route traffic to/through bad guy’s site

Routers usually have custom OS (e.g., Cisco IOS)

DNS servers are typically UNIX boxes

UT incident 199?
– Hackers exploited buffer overflow in UT DNS server (Solaris), got root
– Modified DNS addresses returned for utk.edu to IP addresses in Brazil
– So when your client asked for IP address of koosh.cs.utk.edu, you got some

funky address in Brazil?!?
– In Brazil, the packets were eventually forwarded to proper UT IP address,

but packets could have been sniffed/altered etc.
– Eventually it was noticed that packets to UT were “slow” (RTT much larger

than normal !) and things were fixed … at least that Solaris bug was fixed.

IPP Lecture 5 - 28

UDP and the kernel – sending a UDP datagram

sendto() is a system call, passes address of user message to kernel

Kernel verifies sendto parameters are OK

If enough room in socket’s SNDBUF, copies user message to kernel
space, if not enough room, return error (ENOBUFS) … in any case
your application sendto() is “complete”

Kernel constructs IP packet and calculates checksums (IP and UDP)

IP layer looks up destination address in routing table, and may need to
issue ARP request (asynchronous event)

With Ether address of destination, construct Ether packet and queue to
ether driver (packet could be dropped if TXQUE is full)

Ether driver checks TXQUE and sends out the next packet
– NIC handles CSMA/CD, CRC
– NIC issues interrupt when transfer complete

IPP Lecture 5 - 29

UDP and the kernel – incoming UDP datagram
NIC receives datagram with its NIC address in destination address
field, issues an interrupt

Interrupt handler requests Ether driver to read the datagram

Datagram copied into kernel address space

Driver inspects Ether type field (IP, ARP) and queues packet to
appropriate kernel handler

(assuming not fragmented), kernel IP handler verifies IP checksum and
other IP fields, inspects IP proto field and queues packet payload to
UDP handler

UDP handler verifies checksum and UDP length (discards if fail),
checks to see if there is process listening on the destination UDP port
(if not, requests ICMP handler to send PORT_UNREACHABLE).

UDP handler adds packet to socket’s RCVBUF, if room (if not, drops)

If associated process is blocked on recvfrom(), process is moved to
“ready queue”.

when process runs, datagram copied into user’s buffer
IPP Lecture 5 - 30

Things that slow us down …

Transport layer (UDP)
– Some UDP applications (streaming) do not backoff under heavy

network load, hurting the other transport protocol (TCP) – not “TCP-
friendly”

RealPlayer audio: 10 pkts/sec (rate-based) 70 kbs
– 100 users, 7 mbs 70% of 10mbs ethernet

Star Wars mpeg streaming video 400 kbs
– DNS lookups can slow a network application
– Hackers use UDP to flood the network (denial of service)

Sending a packet to a remote host
1. ARP for local DNS server (IP address in /etc/resolv.conf)
2. Send DNS query to local DNS (this could take a while)
3. ARP for subnet router
4. Send one or more packets to remote via subnet router and then out

into the Internet …

IPP Lecture 5 - 31

UDP vs TCP
Must use UDP for multicast/broadcast

– Would need to send N copies with TCP

UDP for simple request-reply apps or light-weight

UDP where some packet loss can be tolerated
– Audio/video streaming
– Rate-based (TCP’s startup unacceptable)
– Jitter (RTT variations) is a problem (app buffers incoming pkts, RealAudio)
– Delay for retransmissions unacceptable (jitter)

UDP if app needs to talk to 100’s of different hosts
– Don’t need “connections”, just modify socket address struct

Some people are using UDP to get “better” performance than TCP
– Is it fair? Is it TCP-friendly? (RUDP, DDCP)
– Hackers like it for denial of service attack (no flow control, just blast)

TCP for reliability
– Often a UDP application ends up adding a lot of TCP baggage like flow

control, timers, retransmit, buffer management
IPP Lecture 5 - 32

Reliable UDP
Various “standards” for providing reliable UDP

– application “header” for reliability
– Timeouts and retransmission
– Some reference implementations

RTP (real time protocol) RFC 1889
– Protocol for real-time streams (audio/video)

RUDP (RFC 1151)
– Reliable UDP for telephony signalling over the Internet

DCCP (internet draft) datagram control (and congestion) protocol
– TCP-friendly UDP

Several UDP-based file transfer protocols
– Tsunami, FOBS, SABUL, RBUDP, UDT
– Better than TCP? (more later)

ORNL’s atou (Almost TCP over UDP) – research toy

Lots of open research issues in reliable multicast !

IPP Lecture 5 - 33

Network tools
strace

dig

netstat –a

Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State

udp 0 0 *:32768 *:*

udp 0 0 *:syslog *:*

udp 0 0 *:32902 *:*

udp 0 0 *:8037 *:*

udp 0 0 *:875 *:*

udp 0 0 *:sunrpc *:*

lsof –i

COMMAND PID USER FD TYPE DEVICE SIZE NODE NAME
aessrv 1350 dunigan 3u IPv4 2986 UDP *:8654

dhaessrv 1351 dunigan 3u IPv4 2988 UDP *:8037

sslsrv 1352 dunigan 3u IPv4 3026 TCP *:7779 (LISTEN)

web100srv 1356 dunigan 3u IPv4 2991 TCP *:3005 (LISTEN)

udpack 28815 dunigan 3u IPv4 440082 UDP *:32902

bsrv 28822 dunigan 3u IPv4 441364 TCP *:8622 (LISTEN)

IPP Lecture 5 - 34

Network tools
netstat –s

Ip:

4862122 total packets received

0 forwarded

241 incoming packets discarded

3703012 incoming packets delivered

5124445 requests sent out

64 outgoing packets dropped

876367 reassemblies required

74069 packets reassembled ok

28404 fragments created

Icmp:

2797 ICMP messages received

1352 input ICMP message failed.

ICMP input histogram:

destination unreachable: 1324

timeout in transit: 51

echo requests: 72

1411 ICMP messages sent

0 ICMP messages failed

ICMP output histogram:

destination unreachable: 1339

echo replies: 72

Udp:
287729 packets received
55 packets to unknown port received.
241 packet receive errors
380417 packets sent

Note: these stats are for the system
as a whole, it may be difficult to
relate stats to particular flow.

IPP Lecture 5 - 35

Next time …

TCP socket programming

Assignments 2 and 3

