
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 27

Review

Info on take-home final

IPP Lecture 27 - 2

TCP additive increase multiplicative decrease (AIMD)
cwnd � cwnd + 1/cwnd for each ACK
Loss � cwnd � cwnd/2

IPP Lecture 27 - 3

Plan of attack

� Network overview

� BSD sockets and UDP

� TCP

– Socket programming

– Reliable streams

– Header and states

– Flow control and bandwidth-delay

– Measuring performance

– Historical evolution (Tahoe …SACK)

– Congestion control

� Network simulation (ns)

� TCP accelerants

� TCP implementations

� TCP over wireless, satellite, …

IPP Lecture 27 - 4

The lectures

LECTURES

1 overview, class mechanics, networks 101

2 Ethernet, IP, ARP

3 IP routing, tcpdump/ethereal ICMP
ping/traceroute

4 UDP, BSD sockets, client/servers

5 UDP, DNS

6 TCP socket programming

7 reliable streams, TCP header

8 TCP states, flow control, bandwidth-delay

9 performance tools

10 nagle, delayed ACKs, timers, RTT
estimation, TCP slow-start

11 TCP congestion control, TCP Tahoe

12 TCP Reno, NewReno, SACK, FACK

13 other network programming paradigms,
review

LECTURES

14 Models and measurement

15 emulation and simulation

16 ns

17 S-TCP, HSTCP BI-TCP

18 Bandwidth estimation, auto-tuning

19 Vegas, fast, westwood

20 AQM, RED, ECN. XCP

21 Parallel streams, rate based, UDP

22 slow links, asymmetric channels

23 satellites

24 Wireless, mobile, ad hoc

25 Kernel implementation

26 instrumentation, zero copy

27 review

IPP Lecture 27 - 5

The text

1. Intro and history

2. TCP/IP fundamentals

3. Measuring performance (tools)

4. Network simulation

5. TCP modeling

6. Wireless nets

7. Mobile nets

8. Optical nets

9. Satellite nets

10. Asymmetric nets

11. TCP flavors and ns

12. AQM

13. TCP implementation

Appendices: M/M/1 Queues, FreeBSD, Auto-tuning
IPP Lecture 27 - 6

The readings
� Hobbes' Internet history
� CACM '86 Ethernet: Distributed Packet Switching for Local Computer

Networks
� RFC 791 IP
� RFC 768 UDP
� Design philosophy of the DARPA Internet Protocols '88
� RFC 793 TCP
� RFC 1323 window scale, timestamps, PAWS
� Jacobson Congestion Avoidance and Control 1988
� Floyd Simulation-based comparisons of Tahoe, Reno, NewReno, and

SACK TCP
� RFC 2581 TCP congestion control
� On the Effective Evaluation of TCP
� bi-tcp
� TCP Vegas: New techniques for congestion detection and avoidance
� effects of parallel TCP sockets
� Faster TCP
� delay-tolerant networking
� An Analysis of TCP Processing Overhead '89
� The Transmission Control Protocol

IPP Lecture 27 - 7

The assignments

1. Hello, Internet

2. Tcpdump/ethereal

3. UDP

4. Reliable UDP

5. TCP client/server

6. Brain food

7. Hello ns

8. ns chapter 11

9. ns RTT and RED

10. NewReno with UDP

IPP Lecture 27 - 8

The layers

� Physical/data link

– Ethernet, checksums, encapsulation, CSMA/CD

– Wireless, bit error rates, TOE

– Transmission and propagation delay (satellite)

� Network layer

– IP, datagrams, routing, RTT, addressing, ICMP, TTL, fragmentation

– AQM, ECN

� Transport layer

– UDP

– TCP

– Flow control, congestion and loss

� Application layer

– BSD sockets

– Ports and services

– Network tools

IPP Lecture 27 - 9

Concept Collection

� ACK/NAK cumulative ACK
� ACK clocking
� AIMD
� AQM/RED
� Auto-tuning
� Bandwidth-delay product
� Best effort
� Bit error rate
� Byte counting (ACK)
� Checksums
� Client/server/concurrent/iterative
� Compressed ACK
� Header compression
� Congestion control/avoid
� Conservation of packets
� CIDR
� CSMA/CD
� cwnd/sstrhesh
� Datagram vs reliable stream
� Delay-based congestion mgt
� Discrete event simulation
� Dup threshold
� ECN

� Exponential backoff
� Flow control
� Forward ACK
� Fragmentation
� Inverse sqrt p
� Layers/encapsulation
� Maximum segment lifetime(MSL)
� MTU MSS/MTU discovery
� Network mask
� Packet switching vs circuit-based
� Partial ACK
� promiscuous
� Routing
� RTT and RTT estimation
� Selective ACK (SACK)
� Self-clocking
� Sliding window
� Slow-start
� Snoop/split/proxy TCP
� Stretch ACK
� Subnets/supernets
� Switch vs hub
� TTL

IPP Lecture 27 - 10

Our tool set

� ping/traceroute

� ifconfig/netstat

� strace

� lsof

� dig

� ethereal tcpdump/tcptrace/xplot

� ttcp/iperf/netperf

� ns

IPP Lecture 27 - 11

Programming TCP

� Reliable stream of bytes (readn())

� socket(), bind(), connect(), listen(), accept(), read(), write()

� Error returns

– Can get various timeouts (connect failure, retransmit)

– Connection reset

� Socket options

– SO_KEEPALIVE – kernel sends probes on idle socket, early notification of
broken connection

– SO_REUSEADDR – TCP close() can linger awhile, this allows you to restart
your server with same port

– TCP_NODELAY disable Nagle

– TCP_DEBUG (BSD) and TCP_INFO (linux)

– SO_SNDBUF SO_RCVBUF

� Send and receive buffer sizes

� Size to bandwidth-delay product

IPP Lecture 27 - 12

Things that go bump in the net

� TCP connect, and no server process

� TCP connect, server host down

� active TCP session, ctrl-c server

� inactive TCP session, ctrl-c server

� active TCP session, server computer crashes

� inactive TCP session, server computer crashes

� Inactive TCP session, several routers on the path crash and reboot

� inactive TCP session with KEEPALIVE, server computer crashes

� inactive TCP session, server computer crashes and reboots

� start 2nd copy of server

� server tries to bind to port < 1024

� A sends faster than B can receive

IPP Lecture 27 - 13

Modeling TCP

� Congestion control (AIMD)

� Slow-start

– Double cwnd each RTT cwnd � cwnd+1

– To reach window size of N segments, takes log2(N)
RTT’s

� Congestion avoidance

– Increase cwnd by one each RTT

– Each ACK cwnd � cwnd + 1/cwnd

� Inverse sqrt(p)

� Sensitive to MSS and RTT (speed of light)

� Scalable, fair, friendly, stable

flow 1’s allocation x1

P1

optimum
P0

P2

P3

pRTT

MSS 2/3

IPP Lecture 27 - 14

Theory, experiment, simulation

� Live internet tests

– See results in ultimate environment

– Real TCP stacks/OS, traffic

– Vary time and host/paths

– Worry about impact?

� Test beds

– Controlled traffic, but real OS

– Usually LAN based, no queuing

– Repeatable

– Not very good for cross-traffic

� Emulators

– Same as testbed

– Plus control delay, loss, data rates,
dup’s, out-of-order

– Easy to reconfigure

� Need tools to probe and measure

� Simulations

– Easily reconfigured

� Complex topology

� Vary TCP flavor

– Repeatable

– Detailed feedback/instrumentation

– Add delay, loss, cross-traffic,
queues

– Randomness for confidence

– Investigate “new” networks/protocols

– cheap

– Can be slow

– Not real TCP

IPP Lecture 27 - 15

Experimental/simulation measurements

Things to consider for both test beds and simulations

� Learn about good experimental design

– Adequate tests and confidence intervals

– Random start times, re-order experiments

– Anecdotal (illustrate a point) vs prove a point

– Steady-state, test duration

� Selecting and configuring your flavor of TCP

– Tahoe, Reno, Newreno, SACK, FACK …

– Window sizes, RTT, timer tick resolution, delayed ACK, Nagle

– Knowing what your OS is doing: timestamps, window-scaling, Linux

– Router queue sizes and management (droptail, RED, WFQ, ECN)

� Selecting competing traffic

– Bottleneck links

– Realistic traffic? (bursty, Pareto)

– Traffic on the reverse path

IPP Lecture 27 - 16

Things that slow us down …

� Physical layer

– Loose connectors

– RF interference

– Collisions

– Slow media or media errors (BER)

– Speed of light

– Backhoe

� Link layer

– Half/full duplex mismatch

– CRC errors

– ARQ (retry)

– Exponential backoff

– Packet reordering

– NIC queues (txquelen)

– Device (NIC) Driver software

� interrupts

� Network layer

– Fragmentation

– Long routes

– Slow links

– Congestion

– queue overflows (drops) AQM

– Synchronous routing updates?

– Packet reordering (route/Juniper)

– Software implementations/bugs

– Firewalls/encryption

� Block ports, ICMP

� Examine/modify packets

Encapsulation overhead :
just handling all the layering
extra bits in headers

IPP Lecture 27 - 17

Things that slow us down … UDP

� Transport layer (UDP)

– Some UDP applications (streaming) do not backoff under heavy
network load, hurting the other transport protocol (TCP) – not “TCP-
friendly”

� RealPlayer audio: 10 pkts/sec (rate-based) 70 kbs

– 100 users, 7 mbs � 70% of 10mbs ethernet

� Star Wars mpeg streaming video 400 kbs

– DNS lookups can slow a network application

– Hackers use UDP to flood the network (denial of service)

� Sending a packet to a remote host

1. ARP for local DNS server (IP address in /etc/resolv.conf)

2. Send DNS query to local DNS (this could take a while)

3. ARP for subnet router

4. Send one or more packets to remote via subnet router and then out
into the Internet …

IPP Lecture 27 - 18

Things that slow us down … TCP

� SNDBUF limits

� RCVBUF limits

� NIC speed or bottleneck link speed

� Slow-start, delayed ACK, Nagle

� Packet loss and congestion

– TCP recovery variants (Tahoe to Westwood)

– Queue management

� Packet reordering

� Slow ACK path (asymmetric net)

� TCP implementation

� Application “protocol”

� Recovery rate sensitive to RTT (speed of light) and MSS

IPP Lecture 27 - 19

Accelerating TCP

� Tuning configuration parameters

– SNDBUF/RCVBUF – bandwidth-delay product

– Txquelen

– RFC1323 (window scaling, timestamps)

– Nagle, delayed ACK

– Initial slow-start

� Speeding recovery after packet loss

– Fast retransmit, fast recovery

– SACK/FACK

– AIMD, STCP, HSTCP, BI-TCP, TCPW

� Avoiding packet loss

– Dup threshold (out of order resiliance)

– Slow-start and congestion avoidance (reduces losses)

– Vegas/FAST

Parallel TCP

IPP Lecture 27 - 20

TCP evolution

� Window blast, go-back-N, no receiver out of order buffering

� Tahoe (slow start, expo. timeout, RTT estimation, fast retransmit, AIMD)

� Reno (fast recovery)

� New Reno (partial ACKs)

� SACK/FACK (fill holes in one RTT)

� Delay-based: Vegas, FAST

� STCP

� HSTCP

� TCPW

� BI-TCP

IPP Lecture 27 - 21

TCP Tahoe summary

� Van Jacobson’s tweaks to TCP in 4.3 BSD (’88)

� Exponential backoff on timeouts

� Improved RTT estimator

� Slow-start (startup, packet loss, idle)

� Congestion management (AIMD) cwnd/ssthresh

– Sender can’t send more than min(cwnd, his SNDBUF, receiver’s adv. window)

� Can’t have more than cwnd un-ACK’d packets (e.g., packets in flight)

– If packet loss, cut sending rate in half, then slowly increase

� Fast retransmit (3 dup ACKs), avoid timeouts

IPP Lecture 27 - 22

Tahoe Reno NewReno

IPP Lecture 27 - 23

Reno recovery

� The graph illustrates Reno sending new packets for dup ACKs after
half the dup ACKs were accounted for. This helps performance some,
the real advantage of Reno over Tahoe is starting cwnd at cwnd/2 and
not cwnd=1.

cwnd =15 when drop

cut to 7, so wait for 4 ACKs

Then send data for each
ACK

3 dup ACKs & retransmit

IPP Lecture 27 - 24

NewReno fix

� Same loss scenario
{100,102,104} lost

� 3 dup ACK, retransmit 100

� Cut cwnd in half (20 � 10)

� After 1 RTT, ACK for 100-
101, partial ACK,
retransmit 102 and
120,121

� One more RTT, ACK for
102-103, retransmit 104
and 122,123

� One more RTT, cumulative
ACK for rest of window,
exit recovery, cwnd = 10
(note packet burst from
cumulative ACK)

IPP Lecture 27 - 25

TCP timeouts

� NewReno with double drop (timeout)

� 3-dup retransmit (and lost)

– ssthresh � cwnd/2

– cwnd � cwnd/2

� Timeout

– ssthresh � cwnd/2

– cwnd � 1

IPP Lecture 27 - 26

Delay-based congestion avoidance

� Standard TCP detects congestion by packet loss

– Then we must go thru all sorts of gyrations to speed recovery

� Fast retransmit, fast recovery, SACK, FACK, HSTCP, BI-TCP

� TCP Vegas tries to avoid packet loss by slowing down (reducing cwnd)
when RTT starts to increase

– Assumption : congestive loss is preceded by buildup in router queue which
can be sensed by the increasing RTT

IPP Lecture 27 - 27

TCP choices
� Scalable, stable, fair, friendly, available

� Survey says

Flavor control method trigger response

TCP AIMD(1, ½) loss W = W – ½ W

ACK W = W + 1/W

HSTCP AIMD(a(W),b(W)) loss W = W – a(w)W

ACK W = W + b(W)/W

STCP MIMD(1%,1/8) loss W = W – W/8

ACK W = W + 0.01

N TCPs AIMD(N,1/(2N)) loss W = W – W/(2N)

ACK W = W + N/W

BI-TCP AIMD(b,1/8) loss W = W – W/8

ACK W = W + binary incr.

TCPW AI?(1,FSE) loss ssthresh = RTTmi n*FSE

ACK W = W +1/W

FAST/Vegas RTT delta RTT W = W*minRTT/RT T + α

New Reno

ECN < 1%

SACK ~ 80%

timestamp ~ 13%

window 64k ~ 73%

window scale ~ 15%

TBIT results

IPP Lecture 27 - 28

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

Packet Loss Probability

P
ac

ke
ts

/R
T

T

TCP

AIMD
HSTCP

STCP
BIC

Response Functions AIMD(a,b)

Bandwidth scalability RTT Fairness

TCP-Friendliness

pbRTT

abMSS
bw

2

2 −=

IPP Lecture 27 - 29

TCP ‘n it

� Read about it

� Program it

� Model it

� Simulate it

� Measure it

� Diagnose it

� Implement it

� Accelerate it

� Cuss it

� Understand it?

IPP Lecture 27 - 30

Objectives

� Writing internet software (TCP and UDP)

� Understanding Internet protocols

� Measuring, diagnosing, understanding network performance

� Simulating network performance

� Optimizing TCP performance

� Becoming a network wizard

IPP Lecture 27 - 31

finale

� Final in ~dunigan/ipp05/final.pdf

– Take home

– Open book/notes

– Due Sunday dec 11 6 pm

� Powerpoint lecture slides in ~dunigan/ipp05/lecsppt.zip

Amen! Hallelujah!

