Internet Programming & Protocols
Lecture 26

500 MHz Monet@370Mb's

TCP instrumentation E

TCP overhead

= = = o e

www.cs.utk.edu/~dunigan/ipp/

Counting events

e Linux TCP code is sprinkled with event counters
o Reported by netstat or in /proc

if (1(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
tep_inc_pcount(&tp->lost_out, skb);
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
flag |= FLAG_DATA_SACKED;

NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT) ;

if (tp->undo_marker && !tp->undo_retrans) {
DBGUNDO(sk, tp, “D-SACK™);
tep_undo_cwr(tp, 1);
tp->undo_marker = 0;
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO) ;

IPP Lecture 26 - 3

TCP instrumentation

e Externally monitoring a TCP flow with tcpdumpl/tcptrace
e BSD systems all provide TCP_DEBUG socket option for trace i
e TCP code keeps a lot of aggregate TCP statistics

— netstat —s
— Linux /proc/net/netstat
e Per flow statistics
— Linux socket option TCP_INFO
— Linux Web100

£

IPP Lecture 26 - 2

netstat -s

Tep:
9261 active connections openings
174 passive connection openings
1 failed connection attempts
211 connection resets received
3 connections established
436246 segnents received
468946 segments send out
2002 segments retransmited
181 bad segments received.
1137 resets sent

TepExt:
TCPPureAcks: 22705
TCPHPAcks: 149324
TCPRenoRecovery: 0
TCPSackRecove
TCPSACKRenegin:
TCPFACKReorder: 4
TCPSACKReorder: 49
TCPRenoReorder: 0
TCPTSReorder: 3
TCPFullUndo: 3
TCPPartialUndo: 44
TCPDSACKUndo: 0

TCPLossUndo: 129
TCPLoss: 54
TCPLoStRetransmit: 0
TCPRenoFai lures: 2
TCPSackFailures: 69
TCPLossFailures: 15
TCPFastRetrans: 255
TCPForwardRetrans: 72
TCPSlowStartRetrans: 67
TCPTimeouts: 752
TCPRenoRecoveryFa
TCPSackRecoveryFa
TCPSchedulerFailed: 6
TCPRevCol lapsed: 98
TCPDSACKONdSent: 685
TCPDSACKOfoSent: 3
TCPDSACKRecv: 65
TCPDSACKOfoRecv: 0
TCPAbOrtonSyn: 0
TCPAbortOnData: 215
TCPAbortonClose: 54
TCPAbortonllemory: 0
TCPAbortonTimeout: 20

0

0
TCPMemoryPressures: 0 IPP Lecture 26 - 4

TCP_INFO

e Linux setsockopt() (not portable)
e Add to your app. to report interesting TCP variables linux/tcp.h

struct tcp_info

tepi

__u32 tcpi_reordering;

IPP Lecture 26 - 5

Web100

NSF funded (PSC/NCAR/NCSA)
Modified Linux kernel

windowscale, cwnd, ssthresh)
— settable: buffer sizes

— 100+ TCP variables (IETF MIB) (/proc/web100/)
GUI to display/modify a flow’s TCP variables, real-time

API for network-aware applications or tuning daemon

Net100 extensions:

— additional tuning variables and algorithms

— event notification
— Java bandwidth tester

instrumented kernel to read/set TCP variables for a specific flow
— readable: RTT, counts (bytes, pkts, retransmits,dups), state (SACKs,

http://whisper.cs.utk.edu:7123

g

web100.0rg

IPP Lecture 26 - 6

Web100 patches to Linux kernel

From tcp_input.c

if (dst->reordering && tp->reordering 1= dst->reordering) {
tp->sack_ok ~2;
tp->reordering = dst->reordering;
WEB100_VAR_SET(tp, RetranThresh, tp->reordering);

IPP Lecture 26 - 7

Web100 GUI

“Creating a window into the network” IPP Lecture 26 - 8

Instrumented iperf

[whisper web100]% iperfl00 —w 2m -c wisp.csm.ornl.gov

Client connecting to wisp.csm.ornl.gov, TCP port 5001
TCP window size: 4.0 MByte (WARNING: requested 2.0 MByte)

[3] local 160.36.58.221 port 34229 connected with 160.91.212.75 port 5001
[10] Interval Transfer Bandwidth
[3] 0.0-10.2 sec 114 MBytes 93.3 Mbits/sec

CongestionSig 2 CurCund 311320
curiss 1448 CurSsthresh 179552
DupAcksin 0 LimCund 94894680
LimRwin 0 MaxCwnd 359104
MaxRTT 40 MaxRwinRevd 3144448
MaxRwinSent 5840 MaxSsthresh 179552
MinRTT 10 OtherReductio)
PktsOut 82356 PktsRetrans 1
RetranThresh 3 SACKEnabled 3
SACKsRevd 0 SampleRTT 30
Sendstall 3 SmoothedRTT 30
sndLimTimeRwi 0 sndLinTimeCwn 10202454
sndLimTimeSen 2164 Timeouts 0

i 8 Wi 6
DupAcksOut 0 DataPktsin)

IPP Lecture 26 - 9

Java bandwidth tester

e Server running on Web100 host that can report back TCP flow
variables to the java client

Tk = e

FrasFetrans: 13
RetarThiash: 1
Eunman EACKERaBIOD: 3

-
conpartan 100 mrear 0% yout hest 1%

padals WhaARTNAE 13 cargaicn svarte 13 [SACKERew: 749 -
EamgdeRTT. 40

Sanastal 0

EmoothedRTT. 40
SaalimTimaRwin: 0
[EnalimTimeCwnd: 10054753
o =

[Fava B et Window.

IPP Lecture 26 - 10

Web100 trace daemon

o Separate daemon to capture TCP variables for designated flows
— Use Web100 API
— Config file to specify path or port for tracing
— C and python version
e Example, capture bandwidth, cwnd, and ssthresh every 0.1 seconds

e plot

IPP Lecture 26 - 11

i WAD config file
g

Net100 TCP_Tuning Daemon

src_addr: 0.0.0.0

Work-around Daemon (WAD) ... a hack
— tune unknowing sender/receiver at startup and/or during

flow (path/target based tuning) jzi:éﬁ' 00000
— Web100 kernel extensions R 62

pre-set windowscale to allow dynamic tuning

« uses netlink to alert daemon of socket open/close (or sendstall: 0
poll) delack: 0
floyd: 1
« besides existing Web100 buffer tuning, new tuning reldyali 0
parameters and algorithms
o knobs to disable Linux 2.4 caching, burst mgt., and
sendstall
— config file with static tuning data
« mode specifies dynamic tuning (AIMD options, NTAF buffer size,
concurrent streams)
— daemon periodically polls NTAF for tuning data
can do out-of-kernel tuning (e.g., Floyd) |
— written in C (also Python version) NTAF

NTAF is out-of-band path prober
IPP Lecture 26 - 12

Things that slow us down ... TCP

e SNDBUF limits

e RCVBUF limits

e NIC speed or bottleneck link speed
e Slow-start, delayed ACK, Nagle

e Packet loss and congestion
— TCP recovery variants (Tahoe to Westwood)

e Packet reordering
e Slow ACK path (asymmetric net)
e TCP implementation

e Application “protocol”

e Recovery rate sensitive to RTT (speed of light) and MSS

ur IPP Lecture 26 - 13

Performance of a TCP implementation

e What makes one TCP implementation better than another?
— Inthis case, we're not concerned about the flavors of TCP, but how the
kernel TCP implementation interacts with the OS and the hardware
e Metrics
— Network throughput and latency
- CPU load
— Number of active flows
o What are the bottlenecks in a TCP implementation?

e How can we improve the implementation
— Software tricks
— Hardware assist
e An efficient TCP implementation is
— faster (throughput and latency)
— Uses less memory
— Provides more CPU cycles to the application

— could extend life of battery-operated network devices
IPP Lecture 26 - 14

Overhead for TCP

e Per transfer overhead
— Application overhead of SEND or RECEIVE
— OS overhead of handling system call(s)
« Context switch
 Allocating buffers
+ fewer calls helps (big write’s)
o Per packet overhead
— Transport protocol overhead for creating segments
— Queuing to NIC
— NIC transfer and NIC interrupts
+ bigger MTU helps (jumbo frames)
e Per byte overhead
— Copying data
— Checksums

ur IPP Lecture 26 - 15

Does layering affect performance?

*Extra bits for headers, delay in adding/stripping headers

PROTOCOL PERFORMANCE —
MEGABITS/ —
SEC
10—
6.7
4.5 —
2.8
TCP
12 LAYER
TCP
AT i
3 é:’r’?o—rn FTP

PROTOCOL LAYER

Not quite this bad, but you get the idea.
IPP Lecture 26 - 16

TCP software optimizations

e Faster CPUs help keep up with faster NICs

o What is the minimum number of cycles to process a TCP packet?

e *BSD and Linux have fast-path processing for “expected” packets
— Van Jacobson claims TCP receive can be done in 30 instructions

e Linux combines memory copy with checksum

o Cache-aligned data structures and page-aligned buffers

e Linux has many caches to re-use common information
— Memory buffers leave info pre-set for headers etc.

e Faster timer management

o More efficient SACK handling

— Though only invoked when losses (or out of order packets), SACK info can
be extensive for flows with big windows

o The limiting factor is usually memory copies!

Br IPP Lecture 26 - 17

'89 TCP overhead results

e Common path (steady state) instruction counts (just a few 100)

Control pachat fiow

1) = Instructionn

o What slows us down is memory accesses (checksum, copy)

Conta®
P e

Uner-maneem gy 0m
P dhschiam iy
Pt e oy ot
Por paciet

Wbt devoss 100
LRy T— 100

IPP Lecture 26 - 18

Duke TCP overhead analysis

How do we reduce the
* prerey . copy/checksum overhead?

Zero-copy alternatives

e Option 1: page flipping

— NIC places data in page-aligned memory

— OS uses virtual memory hardware to “move” the data
e Option 2: scatter/gather API

— NIC puts the data where ever

— Application can get it from where ever

e Option 3: direct data placement (DDP)
— Headers tell the NIC where to place the data

e Each solution involves the application, the OS, and the NIC

Ref: Chase@Duke.

w IPP Lecture 26 - 20

i HiE A
& Fi4 FEF
é d
w IPP Lecture 26 - 19
Page flipping
Goal: deposit in Receiving app specifies
aligned buffer blocks buffers (per RFC 793 copy
suitable for the 05 VM semantics).
and IO system.
K u
— 1 | .
|t |m
—
Header 4
splitting Aligned VM remaps pages

payload buffers at socket layer

Need page-sized MTU's (4K ? 8K?)

Ref: Chase@Duke

ur IPP Lecture 26 - 21

Page flipping with small MTUs

Glve up on
Jumbo Frames.

I;: K@ |
i | .
/
Split transport headers, Host
sequence and coalesce

payloads for each
connection/streamiflow.

Ref: Chase@Duke.

ur IPP Lecture 26 - 22

Page flipping with user level protocol (ULP)

e Application “messages” contain headers with placement info
e If NIC is doing the splitting, need really smart NIC (parse NFS header)

_ ULP PDUs encapsulated in
~~ stream transport (TCP, SCTP)
/

A

e

_— Kmfj — -L

NN < | .

—— | 4.

Split transport and ULP

headers, coalesce Host
payloads for each stream
{or ULP PDU). Example: an NFS

client reading a file

Ref: Chase@Duke

B IPP Lecture 26 - 23

Page flipping Pros and Cons

* Pro: sometimes works.
= Application buffers must match transport alignment.

o NIC must split headers and coalesce payloads to fill
aligned buffer pages.

NIC must recognize and separate ULP headers as
well as transport headers.

* Page remap requires TLB shootdown for SMPs.

- Costloverhead scales with number of processors.

Ref: Chase@Duke.

ur IPP Lecture 26 - 24

Option 2: scatter/gatter

System and apps see data
as arbitrary scatter/gather
NIC demuitiplexes buffer chains (readonly).
packets by ID of \
receiving process.
.

Deposit data anywhere in _/ Host
buffer pool for recipient.
P P Fbufs and 0-Lite [Rice]

Ref: Chase@Duke

IPP Lecture 26 - 25

Scatter/gather Pros and Cons

® Pro: just might work.
® New APls

» New applications

o New NICs

* New OS

* May not meet app alignment constraints.

Ref: Chase@Duke.

IPP Lecture 26 - 26

Option 3: direct data placement (DDP)

NIC “steers” payloads
directly to app buffers, as
directed by transport
and/or ULP headers.

Ref: Chase@Duke

IPP Lecture 26 - 27

DDP examples

» TCP Offload Engines (TOE) can steer payloads directly to
preposted buffers.

= Similar to page flipping ("pack” each flow into buffers)
— Relies on preposting, doesn’t work for ULPs
» ULP-specific NICs (e.g., ISCSI)
= Proliferation of special-purpose NICs
- Expensive for future ULPs
« RDMA on non-1P networks
~ VIA, Infiniband, ServerNet, etc.

Ref: Chase@Duke.

IPP Lecture 26 - 28

DDP Pros and Cons

o Effective; deposits payloads directly in designated
receive buffers, without copying or flipping

o General: works independent of MTU, page size,
buffer alignment, presence of ULP headers, etc.

* Low-impact; if the NIC is “magic’, DDP is
compatible with existing apps, APIs, ULPs, and OS.

+ Of course, there are no magic NICs...

Ref: Chase@Duke

IPP Lecture 26 - 29

Remote Direct Memory Access (RDMA]

Register buffer steering tags ® with
NIC, pass them to remote peer.

Remote —

Peer | L
palk A

RDMA-like \I
transport shim |
carrles directives Directives and steering
and steering tags tags guide NIC data
in data stream. placement.

Ref: Chase@Duke.

IPP Lecture 26 - 30

The case for RDMA over IP

RDMA-like functions offer a general solution for fast-path
data movement.

= New transport functions to enhance performance.

Lots of experience with RDMA on non-IP interconnects.
~ ROMA is an accepted direct-access model.
- Protocols and APls already exist to use RDMA.

Leverages IP infrastructure, generality, cost.

-

= IP everywhere
RDMA NICs are general across a range of apps and ULPs.

Ref: Chase@Duke

ur IPP Lecture 26 - 31

The case against

» Requires a standard protocol for direct data
placement over IP transports.
- Interoperability
— Must leverage and conform to existing/future framework

for security and management,
* Requires some extension of ULPs or apps to use it.
+ Low to moderate
* “No RDMA protocol exists that can solve X.”

Ref: Chase@Duke.

w IPP Lecture 26 - 32

Duke experiments (Chase)

» Extend a public-domain Unix kernel with high-speed g
networking optimizations known in the literature.
+ FreeB3SD 4.0...
+ extended for zero-copy sockets and checksum offloading.
+ Zero-copy TCP and NFS/UDP
+ Tigon GE and Trapeze/Myrinet
Use netperf to benchmark TCP/IP on different
configurations, using iprobe to profile host CPU activity.
+ 2 types of PCs and 2 types of Alphas
+ 32- and &4-bit PCI
+ vary MTUs from 1500 bytes up to 32KB
» Experiment with various combined optimizations, and
study the numbers.

ur IPP Lecture 26 - 33

CPU overhead for TCP

500 MHz Monet@370Mbls

do e e

Ref: Chase@Duke.

ur IPP Lecture 26 - 34

Duke optimizations

copy sockets for FreeBSD
CP checkum offloading

Ref: Chase@Duke

B IPP Lecture 26 - 35

Netperf/TCP at 2 Gbs (Duke)

2000
Dell PowerEdge 4400, 64166 PCI, 733 MHZ Intel P-ill
TrapezeMyrinet-2000 adapters (LANal-9 chipset)

1500

3
€
3 w00
I
3
3 - .
i e ———————
[24 —— sero—copy & checkmm oMloadlng
00
Bero—capy
Powsrod |
FreeBSD o sptimbsetions
Integrated copy fchecksam
£ 4] 16 M n
MITU (KB)
Ref: Chase@Duke
ur IPP Lecture 26 - 36

TCP in hardware

e Checksums on NICs
— Saves that extra memory pass
— Violates the layered architecture
— Transport layer needs to know link layer will do (or has done) checksum
— Available in many NIC's now — supported by Linux, Windows
e Interrupt coalescing on NICs
— One interrupt for a several packets
— Common for GigE and higher
— “buffering” could increase latency
e TCP offload Engines (TOE)
— Need 1Hz CPU for 1 bit/sec net

TOP Orarhaad Mube: 3 M for 1 bitfnee

o Custom hardware transports (XTP)
— SGl proposal in late 80s
— Transport layer in silicon (NIC)

ur IPP Lecture 26 - 37

TCP offload engines

Special NICs that do much of TCP in the NIC

Does checksums

For write’s, can do segmentation
Reduce memory copies with DMA
Reduce interrupt load

Suited to long flows with few errors

More CPU cycles for applications

= | =
L
L
Bardware o
-
Pt "
Stwmbaad FCP/P stack TOE TCP/IP sk

IPP Lecture 26 - 38

TCP/IP and low latency nets

o Can (should?)TCP/IP compete with custom protocols
— Cluster computing
* Myrinet vs 10GigE
e VIA
— Storage area networks (SANs)
« iSCSI and fiber channel
— Parallel computer interconnects
« Infiniband, cross-bars, HiPPi, fat-trees
« BigMTU's
o High speed (20+ gbs)
« Custom message passing (MPI) or distributed shared memory (SHMEM)
— put/get semantics (zero-copy, RDMA-like)
— Latency below 5 us

ur IPP Lecture 26 - 39

Next time ...

e Review

IPP Lecture 26 - 40

