
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 26

TCP instrumentation

TCP overhead

IPP Lecture 26 - 2

TCP instrumentation

Externally monitoring a TCP flow with tcpdump/tcptrace

BSD systems all provide TCP_DEBUG socket option for trace

TCP code keeps a lot of aggregate TCP statistics
– netstat –s
– Linux /proc/net/netstat

Per flow statistics
– Linux socket option TCP_INFO
– Linux Web100

IPP Lecture 26 - 3

Counting events

Linux TCP code is sprinkled with event counters

Reported by netstat or in /proc

if (!(TCP_SKB_CB(skb)->sacked&(TCPCB_LOST|TCPCB_SACKED_ACKED))) {
tcp_inc_pcount(&tp->lost_out, skb);
TCP_SKB_CB(skb)->sacked |= TCPCB_LOST;
flag |= FLAG_DATA_SACKED;

NET_INC_STATS_BH(LINUX_MIB_TCPLOSTRETRANSMIT);
}

…

if (tp->undo_marker && !tp->undo_retrans) {
DBGUNDO(sk, tp, "D-SACK");
tcp_undo_cwr(tp, 1);
tp->undo_marker = 0;
NET_INC_STATS_BH(LINUX_MIB_TCPDSACKUNDO);

}

IPP Lecture 26 - 4

netstat -s
Tcp:

9261 active connections openings

174 passive connection openings

1 failed connection attempts

211 connection resets received

3 connections established

436246 segments received

468946 segments send out

2002 segments retransmited

181 bad segments received.

1137 resets sent

TcpExt:

TCPPureAcks: 22705

TCPHPAcks: 149324

TCPRenoRecovery: 0

TCPSackRecovery: 141

TCPSACKReneging: 0

TCPFACKReorder: 4

TCPSACKReorder: 49

TCPRenoReorder: 0

TCPTSReorder: 3

TCPFullUndo: 3

TCPPartialUndo: 44

TCPDSACKUndo: 0

TCPLossUndo: 129

TCPLoss: 54

TCPLostRetransmit: 0

TCPRenoFailures: 2

TCPSackFailures: 69

TCPLossFailures: 15

TCPFastRetrans: 255

TCPForwardRetrans: 72

TCPSlowStartRetrans: 67

TCPTimeouts: 752

TCPRenoRecoveryFail: 0

TCPSackRecoveryFail: 0

TCPSchedulerFailed: 6

TCPRcvCollapsed: 98

TCPDSACKOldSent: 685

TCPDSACKOfoSent: 3

TCPDSACKRecv: 65

TCPDSACKOfoRecv: 0

TCPAbortOnSyn: 0

TCPAbortOnData: 215

TCPAbortOnClose: 54

TCPAbortOnMemory: 0

TCPAbortOnTimeout: 20

TCPAbortOnLinger: 0

TCPAbortFailed: 0

TCPMemoryPressures: 0

IPP Lecture 26 - 5

TCP_INFO
Linux setsockopt() (not portable)

Add to your app. to report interesting TCP variables linux/tcp.h
struct tcp_info

{

__u8 tcpi_state;

__u8 tcpi_ca_state;

__u8 tcpi_retransmits;

__u8 tcpi_probes;

__u8 tcpi_backoff;

__u8 tcpi_options;

__u32 tcpi_rcv_mss;

__u32 tcpi_unacked;

__u32 tcpi_sacked;

__u32 tcpi_lost;

__u32 tcpi_retrans;

__u32 tcpi_fackets;

__u32 tcpi_rtt;
__u32 tcpi_rttvar;

__u32 tcpi_snd_ssthresh;

__u32 tcpi_snd_cwnd;

__u32 tcpi_advmss;

__u32 tcpi_reordering;

};

IPP Lecture 26 - 6

Web100

NSF funded (PSC/NCAR/NCSA) web100.org

Modified Linux kernel
– instrumented kernel to read/set TCP variables for a specific flow
– readable: RTT, counts (bytes, pkts, retransmits,dups), state (SACKs,

windowscale, cwnd, ssthresh)
– settable: buffer sizes
– 100+ TCP variables (IETF MIB) (/proc/web100/)

GUI to display/modify a flow’s TCP variables, real-time

API for network-aware applications or tuning daemon

Net100 extensions:
– additional tuning variables and algorithms
– event notification
– Java bandwidth tester http://whisper.cs.utk.edu:7123

IPP Lecture 26 - 7

Web100 patches to Linux kernel
From tcp_input.c

if (dst->reordering && tp->reordering != dst->reordering) {
tp->sack_ok &= ~2;
tp->reordering = dst->reordering;
WEB100_VAR_SET(tp, RetranThresh, tp->reordering);

}

IPP Lecture 26 - 8

Web100 GUI

“Creating a window into the network”

IPP Lecture 26 - 9

Instrumented iperf
[whisper web100]% iperf100 -w 2m -c wisp.csm.ornl.gov

--

Client connecting to wisp.csm.ornl.gov, TCP port 5001

TCP window size: 4.0 MByte (WARNING: requested 2.0 MByte)

--

[3] local 160.36.58.221 port 34229 connected with 160.91.212.75 port 5001

[ID] Interval Transfer Bandwidth

[3] 0.0-10.2 sec 114 MBytes 93.3 Mbits/sec

CongestionSig 2 CurCwnd 311320

CurMSS 1448 CurSsthresh 179552

DupAcksIn 0 LimCwnd 94894680

LimRwin 0 MaxCwnd 359104

MaxRTT 40 MaxRwinRcvd 3144448

MaxRwinSent 5840 MaxSsthresh 179552

MinRTT 10 OtherReductio 0

PktsOut 82356 PktsRetrans 1

RetranThresh 3 SACKEnabled 3

SACKsRcvd 0 SampleRTT 30

SendStall 3 SmoothedRTT 30

SndLimTimeRwi 0 SndLimTimeCwn 10202454

SndLimTimeSen 2164 Timeouts 0

WinScaleRcvd 8 WinScaleSent 6

DupAcksOut 0 DataPktsIn 0

IPP Lecture 26 - 10

Java bandwidth tester

Server running on Web100 host that can report back TCP flow
variables to the java client

IPP Lecture 26 - 11

Web100 trace daemon

Separate daemon to capture TCP variables for designated flows
– Use Web100 API
– Config file to specify path or port for tracing
– C and python version

Example, capture bandwidth, cwnd, and ssthresh every 0.1 seconds

plot

IPP Lecture 26 - 12

Net100 TCP Tuning Daemon
Work-around Daemon (WAD) … a hack
– tune unknowing sender/receiver at startup and/or during

flow (path/target based tuning)
– Web100 kernel extensions

pre-set windowscale to allow dynamic tuning
uses netlink to alert daemon of socket open/close (or
poll)
besides existing Web100 buffer tuning, new tuning
parameters and algorithms
knobs to disable Linux 2.4 caching, burst mgt., and
sendstall

– config file with static tuning data
mode specifies dynamic tuning (AIMD options, NTAF buffer size,
concurrent streams)

– daemon periodically polls NTAF for tuning data
– can do out-of-kernel tuning (e.g., Floyd)
– written in C (also Python version)

WAD config file
[bob]

src_addr: 0.0.0.0
src_port: 0
dst_addr: 10.5.128.74
dst_port: 0
mode: 1
sndbuf: 2000000
rcvbuf: 100000
wadai: 6
wadmd: 0.3
maxssth: 100
divide: 1
reorder: 9
sendstall: 0
delack: 0
floyd: 1
kellyai: 0

NTAF is out-of-band path prober

IPP Lecture 26 - 13

Things that slow us down … TCP

SNDBUF limits

RCVBUF limits

NIC speed or bottleneck link speed

Slow-start, delayed ACK, Nagle

Packet loss and congestion
– TCP recovery variants (Tahoe to Westwood)

Packet reordering

Slow ACK path (asymmetric net)

TCP implementation

Application “protocol”

Recovery rate sensitive to RTT (speed of light) and MSS

IPP Lecture 26 - 14

Performance of a TCP implementation
What makes one TCP implementation better than another?

– In this case, we’re not concerned about the flavors of TCP, but how the
kernel TCP implementation interacts with the OS and the hardware

Metrics
– Network throughput and latency
– CPU load
– Number of active flows

What are the bottlenecks in a TCP implementation?

How can we improve the implementation
– Software tricks
– Hardware assist

An efficient TCP implementation is
– faster (throughput and latency)
– Uses less memory
– Provides more CPU cycles to the application
– could extend life of battery-operated network devices

IPP Lecture 26 - 15

Overhead for TCP

Per transfer overhead
– Application overhead of SEND or RECEIVE
– OS overhead of handling system call(s)

Context switch
Allocating buffers

+ fewer calls helps (big write’s)

Per packet overhead
– Transport protocol overhead for creating segments
– Queuing to NIC
– NIC transfer and NIC interrupts
+ bigger MTU helps (jumbo frames)

Per byte overhead
– Copying data
– Checksums

IPP Lecture 26 - 16

Does layering affect performance?

Not quite this bad, but you get the idea.

•Extra bits for headers, delay in adding/stripping headers

IPP Lecture 26 - 17

TCP software optimizations

Faster CPUs help keep up with faster NICs

What is the minimum number of cycles to process a TCP packet?

*BSD and Linux have fast-path processing for “expected” packets
– Van Jacobson claims TCP receive can be done in 30 instructions

Linux combines memory copy with checksum

Cache-aligned data structures and page-aligned buffers

Linux has many caches to re-use common information
– Memory buffers leave info pre-set for headers etc.

Faster timer management

More efficient SACK handling
– Though only invoked when losses (or out of order packets), SACK info can

be extensive for flows with big windows

The limiting factor is usually memory copies!

IPP Lecture 26 - 18

’89 TCP overhead results

Common path (steady state) instruction counts (just a few 100)

What slows us down is memory accesses (checksum, copy)

IPP Lecture 26 - 19

Duke TCP overhead analysis

How do we reduce the
copy/checksum overhead?

IPP Lecture 26 - 20

Zero-copy alternatives

Option 1: page flipping
– NIC places data in page-aligned memory
– OS uses virtual memory hardware to “move” the data

Option 2: scatter/gather API
– NIC puts the data where ever
– Application can get it from where ever

Option 3: direct data placement (DDP)
– Headers tell the NIC where to place the data

Each solution involves the application, the OS, and the NIC

Ref: Chase@Duke

IPP Lecture 26 - 21

Page flipping

Need page-sized MTU’s (4K ? 8K?)
Ref: Chase@Duke

IPP Lecture 26 - 22

Page flipping with small MTUs

Ref: Chase@Duke

IPP Lecture 26 - 23

Page flipping with user level protocol (ULP)

Application “messages” contain headers with placement info

If NIC is doing the splitting, need really smart NIC (parse NFS header)

Ref: Chase@Duke

IPP Lecture 26 - 24

Page flipping Pros and Cons

Ref: Chase@Duke

IPP Lecture 26 - 25

Option 2: scatter/gatter

Ref: Chase@Duke

IPP Lecture 26 - 26

Scatter/gather Pros and Cons

Ref: Chase@Duke

IPP Lecture 26 - 27

Option 3: direct data placement (DDP)

Ref: Chase@Duke

IPP Lecture 26 - 28

DDP examples

Ref: Chase@Duke

IPP Lecture 26 - 29

DDP Pros and Cons

Ref: Chase@Duke

IPP Lecture 26 - 30

Remote Direct Memory Access (RDMA)

Ref: Chase@Duke

IPP Lecture 26 - 31

The case for RDMA over IP

Ref: Chase@Duke

IPP Lecture 26 - 32

The case against

Ref: Chase@Duke

IPP Lecture 26 - 33

Duke experiments (Chase)

IPP Lecture 26 - 34

CPU overhead for TCP

Ref: Chase@Duke

IPP Lecture 26 - 35

Duke optimizations

Ref: Chase@Duke

IPP Lecture 26 - 36

Netperf/TCP at 2 Gbs (Duke)

Ref: Chase@Duke

IPP Lecture 26 - 37

TCP in hardware

Checksums on NICs
– Saves that extra memory pass
– Violates the layered architecture
– Transport layer needs to know link layer will do (or has done) checksum
– Available in many NIC’s now – supported by Linux, Windows

Interrupt coalescing on NICs
– One interrupt for a several packets
– Common for GigE and higher
– “buffering” could increase latency

TCP offload Engines (TOE)
– Need 1Hz CPU for 1 bit/sec net

Custom hardware transports (XTP)
– SGI proposal in late 80s
– Transport layer in silicon (NIC)

IPP Lecture 26 - 38

TCP offload engines

Special NICs that do much of TCP in the NIC

Does checksums

For write’s, can do segmentation

Reduce memory copies with DMA

Reduce interrupt load

Suited to long flows with few errors

More CPU cycles for applications

IPP Lecture 26 - 39

TCP/IP and low latency nets

Can (should?)TCP/IP compete with custom protocols
– Cluster computing

Myrinet vs 10GigE
VIA

– Storage area networks (SANs)
iSCSI and fiber channel

– Parallel computer interconnects
Infiniband, cross-bars, HiPPi, fat-trees
Big MTU’s
High speed (20+ gbs)
Custom message passing (MPI) or distributed shared memory (SHMEM)

– put/get semantics (zero-copy, RDMA-like)
– Latency below 5 us

IPP Lecture 26 - 40

Next time …

Review

