
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 25

TCP implementation
history
kernel networking
BSD TCP
Linux TCP

IPP Lecture 25 - 2

TCP genealogy

BSD 4.1 (’83) incorporates DARPA TCP/IP protocol stack

BSD descendants
– NetBSD, FreeBSD, OpenBSD
– SunOS/Solaris
– IBM’s AIX
– MAC OS
– Mach

Other OS’s variations from RFC’s or peeking at BSD sources
– System V Unicos
– SGI Irix
– DEC TOPS10/TOPS20 (DARPA)
– Microsoft/DOS PC implementations
– Note: IBM, Cray, and SGI have Linux options

Linux descends from PC instructional OS/network Minix

IPP Lecture 25 - 3

Kernel network stacks

Given von Neuman computer architecture and traditional multi-user OS,
the basic components and operation of a network protocol stack in the
kernel will be about the same regardless of protocol or OS

OS drivers for network interfaces

OS support for pre-emptive scheduling, queue management, memory mgt.,
locks, threads, timers

Network layer software for addressing and routing

Transport layer software for port addressing, packet handling

Event driven
– Application requests to send data

System calls
– Device interrupts

Packet arrivals or transmit completion
– Timer events

Retransmit timeout, connection timeout, IP assembly timeout, delayed ACK
IPP Lecture 25 - 4

Queues and buffers

IPP Lecture 25 - 5

Network memory management

Device interrupt handler needs memory buffer for incoming packets

When application sends data, memory buffer in kernel needed to hold
data til ACK’d

Message buffers are constantly being acquired, queued, and released

Headers for TCP, IP, and Ethernet need to be added (or removed) from
data portion

Memory copying is expensive so do most of the work with pointers

Devices can scatter read/write so you can have separate buffers for
headers and data

– A chain of mbufs makes up a “segment”

Performance issues in acquiring/releasing
– Heap? Pre-allocated fixed size buffers (small, medium, large)? Dynamic?
– Optimizations: cache aligned, page aligned

IPP Lecture 25 - 6

Linux network buffers
Linux uses cache aligned and page aligned buffers (sk_buff)

IPP Lecture 25 - 7

BSD mbuf

BSD uses 128-byte mbuf or 2K mbuf

Example, header mbuf pre-pended to data mbuf’s preparing for send

IPP Lecture 25 - 8

Mbuf message queues

IPP Lecture 25 - 9

UDP receive

mbuf after Ethernet has received a UDP packet

IPP Lecture 25 - 10

UDP receive

Data portion of UDP packet is queued to application receive buffer

After data is passed to application, mbuf’s are released

IPP Lecture 25 - 11

Transmission Control Protocol (TCP)

TCP RFC 793 ‘81

Provides a reliable stream of bytes on top of unreliable IP datagrams

Connection oriented (circuit like)

16-bit port number (service)

Stateful with timers, sequence numbers, flow control, congestion mgt.

4.4BSD lite (Stevens TCP/IP illustrated v2)
UDP: 9 functions, 800 lines of C code
TCP: 28 functions, 4500 lines of C code

Linux 2.6
UDP 1044 lines of C code
TCP 13050 lines of C code

IPP Lecture 25 - 12

TCP finite state machine

IPP Lecture 25 - 13

TCP state transitions
There is a lot of code in the kernel (tcp_input.c) to manage the TCP
state

Establish and close a connection
– SYN/SYN-ACK plus all the option negotiation
case TCPOPT_MAXSEG:

if (optlen != TCPOLEN_MAXSEG)
continue;

if (!(ti->ti_flags & TH_SYN))
continue;

bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
NTOHS(mss);
(void) tcp_mss(tp, mss); /* sets t_maxseg */
break;

– FIN and timeouts for closing

In the source files you’ll see explicit references to current “state”
switch (tp->t_state) {
case TCPS_TIME_WAIT:

tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;

…

case TCPS_SYN_RECEIVED:

case TCPS_ESTABLISHED:

tp->t_state = TCPS_CLOSE_WAIT;

break; IPP Lecture 25 - 14

sending a TCP segment

write() is a system call, passes address of user buffer to kernel

If enough room in socket’s SNDBUF, copies user message to kernel
space, if not enough room, application may be blocked … eventually
your application write() is “complete”

TCP constructs MSS-sized packets from the SNDBUF, building TCP
header with ACK and sequence numbers, may need to start timer

Kernel constructs IP packet and calculates checksums (IP and TCP)

IP layer looks up destination address in routing table, and may need to
issue ARP request (asynchronous event)

With Ether address of destination, construct Ether packet and queue to
ether driver (packet could be dropped if TXQUE is full)

– Linux has a queuing layer in front of device queues for traffic shaping etc.

Ether driver checks TXQUE and sends out the next packet
– NIC handles CSMA/CD, CRC
– NIC issues interrupt when transfer complete (optional)

IPP Lecture 25 - 15

Receiving a TCP data segment (simplified)
NIC receives datagram with its NIC address in destination address
field, issues an interrupt

Interrupt handler requests Ether driver to read the datagram

Datagram copied into kernel address space (mbuf)

Driver inspects Ether type field (IP, ARP) and queues packet to
appropriate kernel handler

(assuming not fragmented), kernel IP handler verifies IP checksum and
other IP fields, inspects IP proto field and queues packet payload to
TCP handler

TCP handler verifies checksum and processes the ACK info
– ACK processing includes, dup ACK, congestion avoidance etc.

TCP handler adds bytes to socket’s RCVBUF, schedules an ACK reply

If associated process is blocked on read(), process is moved to “ready
queue”.

when process runs, data copied into user’s buffer

IPP Lecture 25 - 16

TCP timers & timeouts

connect timeout: 75s

delayed-ACK timeout: 200ms

keepalive: 2 hr+

retransmit: 3-5+ minutes

close wait: 30s (2MSL)

0-window persist: forever @ 60s

IP fragment assembly: 30s

TCP uses a 200ms and 500ms timer to manage the various timeouts.
– Every 500 ms, check for packet timeouts, bump tick count (10 ms today)
– RTT estimator uses tick count from 500 ms timer
– Timestamp is current tick count
– Every 200 ms, see if any delayed ACKs or Nagle-data need to be transmitted
– Faster timer (100 ms) can improve TCP performance when there are timeouts
– Newer OS’s have replaced 500 ms timer with 100 ms or 10 ms timer

IPP Lecture 25 - 17

Timer management

Hardware interval timers – on interrupt dispatch kernel/TCP handler
– One tick interrupt, then check all events for all processes

TCP timer management can be on critical path
– Timer events are added, deleted, modified
– Handle timeout event

Old BSD had slow timer (500 ms) and fast timer (200 ms)
– On interrupt, handler would walk all the TCP control blocks, decrementing

tick values in timer structs. If zero, invoke the proper event handler
(retransmit, re-probe, etc)

Linux has 10ms timer
– Each TCP timeout control block is individually linked into timers event list in

ascending order
– Doubly-linked list
– When timer interrupt occurs, process head of list for any expired events and

schedule handler

IPP Lecture 25 - 18

BSD timer control block walk
/*

* Search through tcb's and update active timers.

*/

ip = tcb.inp_next;

if (ip == 0) {

splx(s);

return;

}

for (; ip != &tcb; ip = ipnxt) {

ipnxt = ip->inp_next;

tp = intotcpcb(ip);

if (tp == 0)

continue;

for (i = 0; i < TCPT_NTIMERS; i++) {

if (tp->t_timer[i] && --tp->t_timer[i] == 0) {

(void) tcp_usrreq(tp->t_inpcb->inp_socket,

PRU_SLOWTIMO, (struct mbuf *)0,

(struct mbuf *)i, (struct mbuf *)0);

if (ipnxt->inp_prev != ip)

goto tpgone;

}

}

tp->t_idle++;

IPP Lecture 25 - 19

Linux retransmit timeout

Handler called by timer interrupt routine, pointer to skb

Update cwnd/ssthresh, retransmit packet ,and do exponential backoff

tcp_enter_loss(sk, 0);

tcp_retransmit_skb(sk, skb_peek(&sk->sk_write_queue));

__sk_dst_reset(sk);

goto out_reset_timer;

out_reset_timer:

tp->rto = min(tp->rto << 1, TCP_RTO_MAX);

tcp_reset_xmit_timer(sk, TCP_TIME_RETRANS, tp->rto);

IPP Lecture 25 - 20

TCP data structures

Flow control with send and
receiver buffers

Hold data at send side til ACKd

Out-of-order queue at receiver

Buffers are really a series of
linked mbufs

IPP Lecture 25 - 21

Control blocks

IPP Lecture 25 - 22

Kernel data associated with a TCP connection

Kernel data structure associated with socket descriptor for active TCP
connection

– Send and receive buffers and control info
– Sliding window control info (left edge, right edge)
– Send and ACK sequence numbers (last sent, last ACKd)
– State info (SYN-sent, ESTABLISHED, etc.)
– Option info (nagle, so_reuse, etc)
– Timer info, retry counters etc.
– RTT variables
– Urgent pointer stuff
– Congestion control info (cwnd, ssthresh)

C structs in kernel sources
– Linux: tcp_opt
– BSD: tcpcb

IPP Lecture 25 - 23

Peeking at the TCP source code

ns (tcp.cc)

In ~dunigan/ipp05/OS-tcp/
– Linux
– 4.4BSD (stevens)
– FreeBSD
– MAC OS
– Solaris

The key data structure is the socket struct or TCP control block for
each flow

– Linux: tcp_opt sock
– BSD: tcpcb

Most of the action is in
– tcp_input.c
– tcp_output.c

IPP Lecture 25 - 24

The main source files

tcp_output.c
– Send one segment
– Send multiple segments (whatever cwnd will allow)
– Retransmit one segment (maybe using SACK info)
– Send ACK, delayed ACK, SACK info, FIN, RST
– Send window probes
– Nagle and silly window syndrome avoidance

tcp_input.c
– Handle response to ACK (dup ACKs, retransmit, AIMD, SACK)
– Do RTT estimation (and Vegas/Westwood bandwidth estimation)
– Queue incoming data to receiver or to out-of-order queue
– For linux, handle “un do” for out of order packets

IPP Lecture 25 - 25

BSD TCP

Source tree

IPP Lecture 25 - 26

BSD socket struct (tcp_var.h)
struct tcpcb {

struct tcpiphdr *seg_next; /* sequencing queue */

struct tcpiphdr *seg_prev;

short t_state; /* state of this connection */

short t_timer[TCPT_NTIMERS]; /* tcp timers */

short t_rxtshift; /* log(2) of rexmt exp. backoff */

short t_rxtcur; /* current retransmit value */

short t_dupacks; /* consecutive dup acks recd */

u_short t_maxseg; /* maximum segment size */

/* send sequence variables */

tcp_seq snd_una; /* send unacknowledged */

tcp_seq snd_nxt; /* send next */

tcp_seq snd_up; /* send urgent pointer */

tcp_seq snd_wl1; /* window update seg seq number */

tcp_seq snd_wl2; /* window update seg ack number */

tcp_seq iss; /* initial send sequence number */

u_long snd_wnd; /* send window */

/* receive sequence variables */

u_long rcv_wnd; /* receive window */

tcp_seq rcv_nxt; /* receive next */

tcp_seq rcv_up; /* receive urgent pointer */

tcp_seq irs; /* initial receive sequence number */

IPP Lecture 25 - 27

/* congestion control (for slow start, source quench, retransmit after loss) */

u_long snd_cwnd; /* congestion-controlled window */

u_long snd_ssthresh; /* snd_cwnd size threshhold for

* for slow start exponential to

* linear switch

*/

/*

* transmit timing stuff. See below for scale of srtt and rttvar.

* "Variance" is actually smoothed difference.

*/

short t_idle; /* inactivity time */

short t_rtt; /* round trip time */

tcp_seq t_rtseq; /* sequence number being timed */

short t_srtt; /* smoothed round-trip time */

short t_rttvar; /* variance in round-trip time */

u_short t_rttmin; /* minimum rtt allowed */

u_long max_sndwnd; /* largest window peer has offered */

/* RFC 1323 variables */

u_char snd_scale; /* window scaling for send window */

u_char rcv_scale; /* window scaling for recv window */

u_char request_r_scale; /* pending window scaling */

u_char requested_s_scale;

u_long ts_recent; /* timestamp echo data */

u_long ts_recent_age; /* when last updated */

tcp_seq last_ack_sent;
IPP Lecture 25 - 28

TCP output

Mbufs for output

IPP Lecture 25 - 29

TCP output

Set retransmit timer if not set
if (tp->t_timer[TCPT_REXMT] == 0 &&

tp->snd_nxt != tp->snd_una) {

tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;

if (tp->t_timer[TCPT_PERSIST]) {

tp->t_timer[TCPT_PERSIST] = 0;

tp->t_rxtshift = 0;

}

}

IPP Lecture 25 - 30

TCP input

Received data handed to tcp_input.c

If data is in sequence, copy to receive buffer
and “notify” application

if ((ti)->ti_seq == (tp)->rcv_nxt &&
(tp)->seg_next == (struct tcpiphdr *)(tp) &&

(tp)->t_state == TCPS_ESTABLISHED) {

tp->t_flags |= TF_DELACK;

(tp)->rcv_nxt += (ti)->ti_len;

flags = (ti)->ti_flags & TH_FIN;

tcpstat.tcps_rcvpack++;

tcpstat.tcps_rcvbyte += (ti)->ti_len;

sbappend(&(so)->so_rcv, (m));

sorwakeup(so);

If out of order, add to out of order queue
(overlap?)

for (q = tp->seg_next; q != (struct tcpiphdr *)tp;
q = (struct tcpiphdr *)q->ti_next)

if (SEQ_GT(q->ti_seq, ti->ti_seq))

break;

IPP Lecture 25 - 31

Doubly linked list

TCP out-of-order receive queue

IPP Lecture 25 - 32

3 dup ACKs
if (++tp->t_dupacks == tcprexmtthresh) {

tcp_seq onxt = tp->snd_nxt;

u_int win =

min(tp->snd_wnd, tp->snd_cwnd) / 2 /

tp->t_maxseg;

if (win < 2) win = 2;

tp->snd_ssthresh = win * tp->t_maxseg;

tp->t_timer[TCPT_REXMT] = 0;

tp->t_rtt = 0;

tp->snd_nxt = ti->ti_ack;

tp->snd_cwnd = tp->t_maxseg;

(void) tcp_output(tp);

tp->snd_cwnd = tp->snd_ssthresh +

tp->t_maxseg * tp->t_dupacks;

if (SEQ_GT(onxt, tp->snd_nxt))

tp->snd_nxt = onxt;

… slow start or linear
register u_int cw = tp->snd_cwnd;
register u_int incr = tp->t_maxseg;

if (cw > tp->snd_ssthresh)
incr = incr * incr / cw + incr / 8;

tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);

IPP Lecture 25 - 33

TCP NewReno partial ACK (FreeBSD 4.6)
if (SEQ_LT(th->th_ack, tp->snd_recover)) {

tcp_seq onxt = tp->snd_nxt;

u_long ocwnd = tp->snd_cwnd;

callout_stop(tp->tt_rexmt);

tp->t_rtttime = 0;

tp->snd_nxt = th->th_ack;

/*

* Set snd_cwnd to one segment beyond acknowledged offset

* (tp->snd_una has not yet been updated when this function

* is called)

*/

tp->snd_cwnd = tp->t_maxseg + (th->th_ack - tp->snd_una);

(void) tcp_output(tp);

tp->snd_cwnd = ocwnd;

if (SEQ_GT(onxt, tp->snd_nxt))

tp->snd_nxt = onxt;

/*

* Partial window deflation. Relies on fact that tp->snd_una

* not updated yet.

*/

tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_maxseg);

return (1);

IPP Lecture 25 - 34

RTT estimation
if (ts_present)

tcp_xmit_timer(tp, tcp_now-ts_ecr+1);

else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))

tcp_xmit_timer(tp,tp->t_rtt);

…

delta = rtt - 1 - (tp->t_srtt >> TCP_RTT_SHIFT);

if ((tp->t_srtt += delta) <= 0)

tp->t_srtt = 1;

if (delta < 0)

delta = -delta;

delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);

if ((tp->t_rttvar += delta) <= 0)

tp->t_rttvar = 1;

IPP Lecture 25 - 35

Linux TCP
Linux derived from Minix

Network buffers are cache and page aligned

A lot of active development now in Linux network stack (messy)

Source tree /usr/src/linux
arch/ drivers/ kernel/ Module.symvers security/

COPYING fs/ lib/ net/ sound/

CREDITS include/ MAINTAINERS README System.map

crypto/ init/ Makefile REPORTING-BUGS usr/

Documentation/ ipc/ mm/ scripts/ vmlinux*

net/

802/ bridge/ ethernet/ key/ nonet.c socket.c unix/

8021q/ built-in.o ipv4/ lapb/ packet/ socket.o wanrouter/

appletalk/ compat.c ipv6/ llc/ rose/ sunrpc/ x25/

atm/ core/ ipx/ Makefile rxrpc/ sysctl_net.c xfrm/

ax25/ decnet/ irda/ netlink/ sched/ sysctl_net.o

bluetooth/ econet/ Kconfig netrom/ sctp/ TUNABLE

In ipv4/

tcp_bic.c tcp_diag.c tcp_hybla.c tcp_minisocks.c tcp_timer.c

tcp.c tcp_highspeed.c tcp_input.c tcp_output.c tcp_vegas.c

tcp_cong.c tcp_htcp.c tcp_ipv4.c tcp_scalable.c tcp_westwood.c
IPP Lecture 25 - 36

Linux socket struct (linux/tcp.h)
struct tcp_opt {

__u32 rcv_nxt; /* What we want to receive next */

__u32 snd_nxt; /* Next sequence we send */

__u32 snd_una; /* First byte we want an ack for */

__u32 snd_sml; /* Last byte of the most recently transmitted small packet */

__u32 rcv_tstamp; /* timestamp of last received ACK (for keepalives) */

__u32 lsndtime; /* timestamp of last sent data packet (for restart window) */

/* Delayed ACK control data */
struct {

__u8 pending; /* ACK is pending */

__u8 quick; /* Scheduled number of quick acks */

__u8 pingpong; /* The session is interactive */

__u8 blocked; /* Delayed ACK was blocked by socket lock*/

__u32 ato; /* Predicted tick of soft clock */

unsigned long timeout; /* Currently scheduled timeout */

__u32 lrcvtime; /* timestamp of last received data packet*/

__u16 last_seg_size; /* Size of last incoming segment */

__u16 rcv_mss; /* MSS used for delayed ACK decisions */

}

IPP Lecture 25 - 37

__u8 ca_state; /* State of fast-retransmit machine */
__u8 retransmits; /* Number of unrecovered RTO timeouts. */

__u8 reordering; /* Packet reordering metric. */

__u8 frto_counter; /* Number of new acks after RTO */

__u32 frto_highmark; /* snd_nxt when RTO occurred */

__u8 adv_cong; /* Using Vegas, Westwood, or BIC */

/* RTT measurement */

__u8 backoff; /* backoff */

__u32 srtt; /* smoothed round trip time << 3 */

__u32 mdev; /* medium deviation */

__u32 mdev_max; /* maximal mdev for the last rtt period */

__u32 rttvar; /* smoothed mdev_max */

__u32 rtt_seq; /* sequence number to update rttvar */

__u32 rto; /* retransmit timeout */

IPP Lecture 25 - 38

/*

* Slow start and congestion control (see also Nagle, and Karn & Partridge)

*/

__u32 snd_ssthresh; /* Slow start size threshold */

__u32 snd_cwnd; /* Sending congestion window */

__u16 snd_cwnd_cnt; /* Linear increase counter */

__u16 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow above this */

__u32 snd_cwnd_used;

__u32 snd_cwnd_stamp;

/* Two commonly used timers in both sender and receiver paths. */

unsigned long timeout;

struct timer_list retransmit_timer; /* Resend (no ack) */

struct timer_list delack_timer; /* Ack delay */

struct sk_buff_head out_of_order_queue; /* Out of order segments go
here */

/* SACKs data */

__u16 user_mss; /* mss requested by user in ioctl */

__u8 dsack; /* D-SACK is scheduled */

__u8 eff_sacks; /* Size of SACK array to send with next packet */

struct tcp_sack_block duplicate_sack[1]; /* D-SACK block */

struct tcp_sack_block selective_acks[4]; /* The SACKS themselves*/

IPP Lecture 25 - 39

Linux code snippets

Adding bytes to out-of-order queue

if (skb_queue_len(&tp->out_of_order_queue)) {
tcp_ofo_queue(sk);

/* RFC2581. 4.2. SHOULD send immediate ACK, when
* gap in queue is filled.
*/
if (!skb_queue_len(&tp->out_of_order_queue))

tp->ack.pingpong = 0;
}

Congestion avoidance, adjusting cwnd

if (tcp_westwood_cwnd(tp))
tp->snd_ssthresh = tp->snd_cwnd;

else
tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_ssthresh);

tp->snd_cwnd_stamp = tcp_time_stamp;

IPP Lecture 25 - 40

Linux TCP optimizations

Cache (in router cache) reorder_threshold and ssthresh for path

Adaptive reorder_threshold (dup thresh)
– Initially 3
– If packet arrives “early” after retransmit, assume out of order
– Cancel (un do) congestion avoidance
– Increment reorder_threshold
– D-SACK info also used to update reorder_threshold

Max burst limit for back-to-back sends

Receiver ACK’s every packet on initial slow-start

Send and receive buffer auto-tuning

Linux 2.6.13 has pluggable congestion avoidance modules
– HS TCP, STCP, TCP-hybla, H-TCP, Westwood, Vegas
– BI-TCP default
– Newreno/SACK/FACK/ECN

IPP Lecture 25 - 41

Tuning the TCP stack

In the “old” days, use a kernel debugger to set variables in kernel
memory or on disk image of kernel

If values were hard-wired into kernel, then edit config files or sources
and rebuild kernel (Appendix B)

Today most interesting kernel variables can be viewed/modified with
sysctl (and /proc in linux) or Windows registry

net.ipv4.tcp_low_latency = 0
net.ipv4.tcp_frto = 0
net.ipv4.tcp_tw_reuse = 0
net.ipv4.tcp_adv_win_scale = 2
net.ipv4.tcp_app_win = 31
net.ipv4.tcp_rmem = 4096 87380 174760
net.ipv4.tcp_wmem = 4096 16384 131072
net.ipv4.tcp_mem = 97280 97792 98304
net.ipv4.tcp_dsack = 1
net.ipv4.tcp_ecn = 0
net.ipv4.tcp_reordering = 3
net.ipv4.tcp_fack = 1
net.ipv4.tcp_orphan_retries = 0
net.ipv4.tcp_max_syn_backlog = 1024
net.ipv4.tcp_rfc1337 = 0
net.ipv4.tcp_stdurg = 0
net.ipv4.tcp_abort_on_overflow = 0
net.ipv4.tcp_tw_recycle = 0
net.ipv4.tcp_syncookies = 0
net.ipv4.tcp_fin_timeout = 60
net.ipv4.tcp_retries2 = 15

IPP Lecture 25 - 42

OS tuning incantations

FreeBSD max buffer size sysctl -w kern.maxsockbuf=524288

Linux
echo 1 > /proc/sys/net/ipv4/tcp_timestamps
echo 1 > /proc/sys/net/ipv4/tcp_window_scaling
echo 1 > /proc/sys/net/ipv4/tcp_sack
echo 8388608 > /proc/sys/net/core/wmem_max
echo 8388608 > /proc/sys/net/core/rmem_max
echo "4096 87380 4194304" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 65536 4194304" > /proc/sys/net/ipv4/tcp_wmem

Windows XP registry
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

GlobalMaxTcpWindowSize="256960"

Tcp1323Opts="1"

See PSC tuning table

IPP Lecture 25 - 43

Known implementation problems (RFC 2525)

No initial slow start

No slow start after time out

Failed to initialized cwnd

Failure to retain out of order data

Extra additive constant in AIMD

Initial RTO too low

No window deflation exiting recovery

Short connection keepalive

No exponential backoff on timeout

Window probe deadlock

Stretch ACKs

Retransmit multiple packets

FIN/RST logic broken

Hacker tools (nmap, quesos,…) remotely
identify an OS by sending variously
formed IP/TCP packets. Each OS
responds a bit differently.

IPP Lecture 25 - 44

TBIT, TCP behavior inference tool

How to determine the flavor of TCP a remote host is running?

Passive info (tcpdump): observe SYN/SYN-ACK and window advertisements
window scale, timestamps, SACK, ECN, MTU discovery

For TCP, all the “action” is on the sender side – make remote send data

Request web pages and induce packet loss and observe recovery
– Emulator test bed and/or TBIT tool

IPP Lecture 25 - 45

TCP survey

New Reno

ECN < 1%

SACK ~ 80%

timestamp ~ 13%

window 64k ~ 73%

window scale ~ 15%

TBIT results

IPP Lecture 25 - 46

Next time …

TCP instrumentation

TCP overhead

