
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 22

Slow links and Compression

Asymmetric networks

IPP Lecture 22 - 2

Concept Collection

ACK/NAK cumulative ACK
ACK clocking
AIMD
Auto-tuning
Bandwidth-delay product
Best effort
Bit error rate
Checksums
Client/server/concurrent/iterative
Compressed ACK
Congestion control/avoid
Conservation of packets
CIDR
CSMA/CD
cwnd/sstrhesh
Datagram vs reliable stream
Delay-based congestion
Discrete event simulation
Dup threshold
ECN

Exponential backoff
Flow control
Forward ACK
Fragmentation
Inverse sqrt p
Layers/encapsulation
Maximum segment lifetime(MSL)
MTU MSS/MTU discovery
Network mask
Packet switching vs circuit-based
Partial ACK
promiscuous
Routing
RTT and RTT estimation
Selective ACK (SACK)
Self-clocking
Sliding window
Slow-start
Subnets/supernets
Switch vs hub
TTL

IPP Lecture 22 - 3

Our tool set

ping/traceroute

ifconfig/netstat

strace

lsof

dig

ethereal tcpdump/tcptrace/xplot

ttcp/iperf/netperf

ns

IPP Lecture 22 - 4

Plan of attack

Network overview

BSD sockets and UDP

TCP
– Socket programming
– Reliable streams
– Header and states
– Flow control and bandwidth-delay
– Measuring performance
– Historical evolution (Tahoe …SACK)
– Congestion control

Network simulation (ns)

TCP accelerants

TCP over wireless, satellite, …

TCP implementations

LECTURES

14 Models and measurement

15 emulation and simulation

16 ns

17 S-TCP, HSTCP BI-TCP

18 Bandwidth estimation

19 Vegas, fast, westwood

20 AQM, RED, ECN. XCP

21 Parallel and UDP

22 Slow speed, asymmetric

23 satellites

24 wireless

25 Kernel implemenation, web100

26 Cluster TCP, zero copy

27 review

IPP Lecture 22 - 5

TCP for various networks

We have a rich collection of TCP flavors and tuning options

Our emphasis has been getting TCP to perform well over long delay,
high speed networks

In the next few sessions, we will look at which flavors and options are
needed to make TCP perform well over various other networks

– Slow links
– Asymmetric networks
– Satellite (long-delay) networks
– Wireless/mobile/adhoc networks

IPP Lecture 22 - 6

TCP for slow links: compression

Reducing number of bytes you have to send

Application layer
– bzip/compress/zip
– MPEG/jpg/MP3

Network
– Application layer (PGP, bbcp)
– Presentation layer (SSL)
– Transport layer

TCP header compression
– Link layer (modems)

IPP Lecture 22 - 7

Link layer compression (modem)

For slow speed links, compressing data so you put fewer bits on the
wire is a big win.

Compression employed in hardware modems for 56k dialup and ISDN

Business Data Communications (6e)

IPP Lecture 22 - 8

Data Compression
Modem data compression capabilities enable modems to have data
throughput rates greater than their maximum bit rates

This is accomplished by substituting large strings of repeating
characters or bits with shorter codes

Widely supported standards for data compression include
– V.42bis --- up to 4:1 compression using the Lempel Ziv algorithm
– MNP Class 5 --- supports 1.3:1 and 2:1 ratios (via Huffman encoding and

run-length encoding)
– MNP Class 7 – up to 3:1 compression
– V.44 --- capable of 20% to 100% improvements over V.42bis

Business Data Communications (6e)

IPP Lecture 22 - 9

v.44 vs v.42

Compression reduces payload by a factor of 3 or more improves
throughput by a factor of 3 or more

IPP Lecture 22 - 10

TCP header compression: Motivation

TCP/IP header size is (at least) 40 bytes.
Significant overhead for small packets
Example: Using telnet over slow modem connection.

– In many cases the data size is one byte.
– 40 bytes of header, then return ACK is 40 bytes (52 bytes with timestamp)

Solution: Compress TCP/IP headers
– Improve TCP/IP performance over low speed serial links.
– Defined in RFC 1144

IPP Lecture 22 - 11

TCP/IP Header Compression

This is not an end to end compression.
– Compression is done in the entry point of the (slow) serial link.
– Decompression is done in egress point of the serial link.
– Compression is done between the network and the link layers.

In the SLIP driver
Transparent to TCP/IP.

TCP

IP

H.C.

Link Layer

IP

H.C.

Link Link

TCP

IP

Link Layer

IPP Lecture 22 - 12

Basic Idea

The sender and receiver keep track of active connections
The receiver keeps a copy of the header from the last packet from each
connection.
Differential coding: The delta between the current and the previous

packet is sent.
Constant fields

– In a TCP connection many fields are likely to remain constant.
– A connection number is sent instead of these fields.

IPP Lecture 22 - 13

Constant Fields

•Some fields are unnecessary
IP checksum (IP header is not transmitted).

Total length (redundancy with layer 2 protocols).

IPP Lecture 22 - 14

Changeable Fields

Other fields can be changed.
Nevertheless, they do not all change at the same time.

– e.g. in an ACK packet the sequence number may remain constant.
The sender sends only the fields that are changed.

– It uses the copy of the last packet that was sent for each connection.
– A bit mask that indicates which fields were sent

How the fields change?
– The difference between current and previous packet ID is small (usually <

256, i.e. one byte).
– The difference between current and previous sequence number is less than

216 (i.e. 2 bytes).

The differences in the changing fields are sent rather than the fields
themselves.

IPP Lecture 22 - 15

Packets Types

The sender can send 3 types of packets.

The packet type is stored in the header of the link layer protocol.
1. TYPE_IP packets are regular uncompressed IP packets.

Non-TCP packets.
Uncompressible TCP headers.

2. UNCOMPRESSED_TCP packets are identical to the original packets
except the IP protocol field is replaced with a connection number.

Use to (re-)synchronizes the receiver.
Use to send a TCP packet of new connection.

3. COMPRESSED_TCP.

IPP Lecture 22 - 16

The Compression System

IPP Lecture 22 - 17

The Compression System

IP packets goes through the compressor.
Non-TCP packets and uncompressible TCP packets are marked as
TYPE_IP and passed to the framer.
Compressible TCP packets are looked up in an array of packets
headers.
– If a matching connection is found:

The incoming packet is compressed.
The uncompressed header is copied into the array.
A packet of type COMPRESSED_TCP is sent to the framer.

– If no match is found:
The header is copied into an array of packet headers.
A packet of type UNCOMPRESSED_TCP is sent to the framer.

IPP Lecture 22 - 18

The Compression System

The decompressor does switch on the type of incoming packets.
TYPE_IP packets simply pass through.
UNCOMPRESSED_TCP packets

– The connection number is extracted and used as an index into the array of
saved headers.

– The header is copied into the array
– IPPROTO_TCP is restored in the protocol field in the IP header.

COMPRESSED_TCP packets
– The last packet from that connection is extracted from the array of saved

header using the connection number.
– The compressed header is used to restore a new TCP/IP header and

construct a new TCP/IP packet.
– The new header is stored in the array.

IPP Lecture 22 - 19

Compressed Packet Format

The first byte is a bit mask that identifies
which of the fields are actually changed.
TCP Checksum of the original packet is
located in the compressed header.

– An end-to-end integrity check is still valid.
– Used for error detecting and resynchronize.

The delta’s of fields are usually smaller than
255.

– One or two bytes are used to encode the
difference.

IPP Lecture 22 - 20

Uncompressible TCP Headers

TYPE_IP
– Fragmented IP packets.
– If any of the TCP control bits (SYN, FIN, RST) are set or if the ACK bit is

CLEAR.
Only when the connection is established or terminated.

UNCOMPRESSED_TCP
– The difference between fields cannot be encoded (i.e. more than 216-1).
– In case of negative sequence number or ack.

IPP Lecture 22 - 21

Notes

The compression is a differential coding, thus the framer must not re-
order packets.

The framer must provide good error detection.

If connection numbers are compressed, the framer must provide an
error indication.

The average compressed header size is ~3 bytes.

Other header compression schemes
– IP (RFC 2507)
– RTP

Also see RFC 3150 end-to-end performance for slow links

Watch out when doing bandwidth tests (iperf or ttcp) over
compressed links – get absurdly high througput.

With ttcp you can input a compressed file to defeat compression

ttcp –t host < file.tgz

IPP Lecture 22 - 22

TCP over asymmetric networks
types of asymmetric networks

– Bandwidth/capacity asymmetry
Forward and reverse path have different data rates

– ADSL
– HFC
– broadband (6 mbs/ 360kbs)
– Satellite/dialup (400 kbs downlink, dialup uplink 14k to 56k)
– StarBand satellite (500 kbs down, 50 kbs up)

Similar effect can happen with cross-traffic on the reverse path
– Media-access asymmetry

Wireless base-station has quicker MAC access than mobile nodes
– Base station “owns” down-link
– End nodes compete/collide for up-link channel (hub & spoke model)

Packet radio network
– Half duplex – reverse and forward path traffic compete!
– Wildly varying RTTs and ACK queuing

– Loss rate asymmetry
Different link layer loss characteristics (satellite vs landline)
Or congestion on forward or reverse path inducing congestive loss

See RFC 3449 (TCP on asymmetric paths)

IPP Lecture 22 - 23

Bandwidth/capacity asymmetry and TCP

IPP Lecture 22 - 24

Asymmetric bandwidths

Capacity of reverse path can limit performance of forward path

Normalized bandwidth ratio, k
– Forward path 10 mbs, reverse 100 kbs, raw bw ratio is 100
– With 1000-byte packets in the forward, and 40-byte ACK in reverse, ratio of

packet sizes is 25
– k = 100/25 = 4

If there is more than one ACK for every 4 data packets then the reverse
channel will get saturated before the forward channel

In ns you can experiment with asymmetric paths
– Use simplex-link in place of duplex-link
$ns simplex-link $n0 $n1 $linkbw $linkdelay DropTail
$ns simplex-link $n1 $n0 28k $linkdelay DropTail

IPP Lecture 22 - 25

Asymmetric bandwidths

Example 10 mbs forward path with 28.8 kbs reverse path
– ACK’s with timestamp option 52 bytes, data packet size 1000 bytes
– Use compressed TCP header (C-SLIP) reduce ACK size to 18 bytes
– Delayed ACKs help too (half as many ACK packets)

IPP Lecture 22 - 26

Reverse path loss

Reverse path (ACK) will also have finite router buffer space

ACK’s can be dropped
– Cumulative ACK lets TCP proceed
– But sender may become bursty, which may cause forward path losses
– Sender TCP algorithms based on ACK counting

Slower slow-start
Slow linear recovery
Disrupt fast retransmit
Sender pause waiting for ACKs

Traffic on the reverse path further reduces available bandwidth
– e.g. your doing web surfing (outbound) while downloading file (inbound)
– Outbound ACKs for the file transfer may get dropped, stalling transfer

Some of our atou experiments from home experienced ACK-limited
throughput (at first, mistakenly sent full (null) SACK blocks)

IPP Lecture 22 - 27

Solutions for the reverse (ACK) path

Reduce frequency of ACKs
– ACK congestion control (ACC)
– ACK filtering (AF)

Handling infrequent ACKs
– Sender adaptation (SA)
– ACK reconstruction (AR)

Scheduling mechanisms
– ACK-first scheduling (AFS)

None of the above are elegant – work arounds

IPP Lecture 22 - 28

ACK congestion control (ACC)

Use RED to throttle sender, but mark on ACK path

IPP Lecture 22 - 29

ACK filtering (AF)

Purge all redundant, cumulative ACKs from constrained reverse queue

Deterministic or random purging

Use in conjunction with sender adaptation or ACK reconstruction

IPP Lecture 22 - 30

Sender adaptation (SA)

With infrequent ACKs
– TCP window growth is slower (slow-start and linear recovery)

Could do “byte counting” instead of ACK counting
– e.g., a delayed ACK counts as two ACKs

– Sender tends to be bursty (cumulative ACK release)
Pace data packets instead of burst

IPP Lecture 22 - 31

ACK reconstruction (AR)

Reconstructor regenerates ACKs at other end of constrained channel

Shields sender from large gaps in ACK sequence, reduces burstiness

ACKs are regenerated at rate depending on
– Input rate from constrained channel
– Number of required ACKs (target ACK spacing)

IPP Lecture 22 - 32

ACKs-first scheduling (AF)

Bi-directional traffic
– Both data and ACKs sharing reverse channel

Move ACKs to the front

IPP Lecture 22 - 33

Uni-directional performance

IPP Lecture 22 - 34

Bi-directional transfers

Inbound and outbound data transfers

ACC + ACKs-first close to optimal
– Optimal: max forward throughput when reverse throughput is largest

IPP Lecture 22 - 35

Bandwidth asymmetry summary

Good solution has several components

Header compression reduces problem

Reduce the frequency of ACKs over reverse channel (ACC + AF)

Handle infrequent ACKs (SA + AR)

Move ACKs to front (AF)

I don’t think any of these are widely deployed except in proxies (later)

IPP Lecture 22 - 36

Next time …

Satellite nets and inter-gallactic TCP

assignment 9 and 10

