
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 18

Bandwidth estimation

Auto-tuning (not tuning cars)

IPP Lecture 18 - 2

Accelerating TCP

Tuning configuration parameters
– SNDBUF/RCVBUF – bandwidth-delay product
– Txquelen
– RFC1323 (window scaling, timestamps)
– Nagle, delayed ACK
– Initial slow-start

Speeding recovery after packet loss
– Fast retransmit, fast recovery
– SACK/FACK
– AIMD, STCP, HSTCP, BI-TCP, Westwood

Avoiding packet loss
– Dup threshold (out of order resilience)
– Slow-start and congestion avoidance (reduces losses)
– Vegas/FAST

IPP Lecture 18 - 3

Sizing send/receive buffers

Tools and techniques for estimating the bandwidth-delay of a path
– Path bandwidth capacity (narrow link)

pathrate pathchar capprobe
– Available path bandwidth (tight link)

Pathload pathchirp pathvar

Incorporating path buffer estimations into TCP or applications
– Auto-tuning
– TCP AIMD (cwnd adjustments) is already doing dynamic buffer tuning up to

the SNDBUF/RCVBUF limit

IPP Lecture 18 - 4

The Internet black box

End-systems can infer network state through end-to-end (e2e) measurements
– Without info from routers

– Objectives: accuracy, speed, non-intrusiveness

Many of these powerpoint slides courtesy of Dovrolis at GaTech

probe
packets

IPP Lecture 18 - 5

Bandwidth estimation in packet networks

Bandwidth estimation (bwest):
– Infer various throughput-related metrics with end-to-end network measurements

Early works:
Keshav’s packet pair method (‘89)
Bolot’s capacity measurements (’93)
Carter’s bprobe and cprobe tools (’96)
Jacobson’s pathchar for per-hop capacities (‘97)
Melander’s TOPP method for avail-bw estimation (’00)

In the last 3-4 years:
– Several fundamentally new estimation techniques
– Many research papers at prestigious conferences
– More than a dozen of new measurement tools
– Several applications of bwest methods

IPP Lecture 18 - 6

Applications of bandwidth estimation

Large TCP transfers and congestion control

– Bandwidth-delay product estimation
– Socket buffer sizing

Streaming multimedia

– Adjust encoding rate based on avail-bw

Intelligent routing systems

– Overlay networks and multihoming
– Select best path based on capacity or avail-bw

Content Distribution Networks (CDNs)

– Choose server based on least-loaded path

SLA and QoS verification

– Monitor path load and allocated capacity

End-to-end admission control

Network “spectroscopy”

TCP-based estimators employed in Vegas, FAST, Westwood

IPP Lecture 18 - 7

Path capacity

Maximum possible end-to-end throughput at IP layer
– In the absence of any cross traffic
– Achievable with maximum-sized packets

If Ci is capacity of link i, end-to-end capacity C defined as:

Capacity determined by narrow link

iHi
CC

,...,1
min
=

=

IPP Lecture 18 - 8

Available bandwidth definition

Per-hop average avail-bw:
– Ai = Ci (1-ui)
– ui: average utilization
– A.k.a. residual capacity

End-to-end avg avail-bw A:

Determined by tight link

ISPs measure per-hop avail-bw
passively (router counters,
MRTG graphs)

iHi
AA

,...,1
min
=

=

IPP Lecture 18 - 9

Available bandwidth distribution

Avail-bw has significant variability
– Need to estimate second-order moments, or even better, the avail-bw

distribution

Variability depends on averaging timescale τ
– Larger timescale, lower variance

Distribution is Gaussian-like, if τ >100-200 msec and with sufficient flow
multiplexing

IPP Lecture 18 - 10

Capacity estimation Capacity estimation ---- Packet Pair DispersionPacket Pair Dispersion
(slide by Ling(slide by Ling--JyhJyh Chen, UCLA)Chen, UCLA)

T3

T2 T3

T3

T1

T3

Narrow Link

20Mbps 10Mbps 5Mbps 10Mbps 20Mbps 8Mbps

Like the question on assignment 6, use arrival times of ACK’s

IPP Lecture 18 - 11

Packet pair dispersion

Packet Pair (P-P) technique
– Originally, due to Jacobson

& Keshav

Send two equal-sized packets
back-to-back
– Packet size: L
– Packet trx time at link i: L/Ci

P-P dispersion: time interval
between last bit of two packets

Without any cross traffic, the
dispersion at receiver is
determined by narrow link:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆=∆

i
inout C

L,max

C
L

C
L

i
HiR =⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=∆

= ,...,1
max

IPP Lecture 18 - 12

Cross traffic interference

Cross traffic packets can affect P-P dispersion
– P-P expansion: capacity underestimation
– P-P compression: capacity overestimation

Noise in P-P distribution depends on cross traffic load

Example: Internet path with 1Mbps capacity

IPP Lecture 18 - 13

Compression of p-p dispersion
First packet queueing => compressed dispersion

– E.g., ACK compression
ACK’s queued up in router on fast link, they pop out “fast”

– Result: capacity overestimation

IPP Lecture 18 - 14

Expansion of p-p dispersion
Second packet queueing => expansion of dispersion

– Another packet gets between your probe packets
– Result: capacity underestimation

IPP Lecture 18 - 15

Estimation tools

Various tools have been developed to send
– Lots of packet pairs
– Or packet trains (N back-to-back packets)

Statistical analysis of timings of returning packets

These tools can be invasive, and high confidence often requires long
runs (minutes … hours)

The trick is to develop efficient and accurate tools
– Typically one-sided (no remote server), use ping or traceroute like probes

pathchar

pchar

pathprobe

capprobe

iperf pathrate pathload (2-sided)

IPP Lecture 18 - 16

pathrate (capacity estimator)
Perform many P-P measurements & detect local modes
Estimate Average Dispersion Rate (ADR) with long packet trains
– ADR is provably a lower bound for path capacity
– Reject local modes < ADR

Select capacity from remaining modes (kurtosis-density statistic)

See www.pathrate.org for more details and estimation tool

IPP Lecture 18 - 17

CapProbe
– Both expansion and compression are result of probing packets experiencing

queuing
– Key insight: packet pair that sees zero queueing delay would yield exact

estimate

CapacityCapacity

IPP Lecture 18 - 18

Per-hop capacity estimation

traceroute on steroids
– Tools that try to calculate capacity of each link in path!
– Slow and invasive

pathchar

clink

pchar

IPP Lecture 18 - 19

Variable Packet Size (VPS) probing

Sender transmits probes with
– Different packet sizes L
– Time-to-live (TTL) set to expire at Ith router

Receive ICMP time-exceeded messages from Ith router
RTT up to Ith router sum of
– Serialization delays L/Ci, LICMP/Ci

r

– Propagation delays τi
f,τi

r

– Queuing delays di
f, di

r

IPP Lecture 18 - 20

Capacity Estimation with VPS

Assume minimum RTT for each packet size does not include any
queuing delay

Linear relation between minimum RTT and and probe packet length L

Capacity of Ith link

∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+++=

I

i

r
ir

i

ICMPf
i

i
I C

L
C
LLT

1
)(ττ

∑
=

=+=
I

i i
IIII C

LLT
1

1)(ββα

1

1

−−
=

II
IC

ββ

IPP Lecture 18 - 21

pathchar

Traceoute-like probes with different packet sizes

Repeated tests til “confident” … or doesn’t converge … slow

pathchar ka9q.ampr.org

pathchar to ka9q.ampr.org (129.46.90.35)
mtu limitted to 1500 bytes at local host
doing 32 probes at each of 64 to 1500 by 44
0 192.172.226.24 (192.172.226.24)
| 9.3 Mb/s, 269 us (1.83 ms)
1 pinot (192.172.226.1)
| 85 Mb/s, 245 us (2.46 ms), 1% dropped
2 sdscdmz-fddi.cerf.net (198.17.46.153)
| 45 Mb/s, -13 us (2.70 ms)
3 qualcomm-sdsc-ds3.cerf.net (134.24.47.200)
| 8.8 Mb/s, 1 us (4.07 ms)
4 krypton-e2.qualcomm.com (192.35.156.2)
| 5.2 Mb/s, 1.02 ms (8.42 ms)
5 ascend-max.qualcomm.com (129.46.54.31)
| 53.2 Kb/s, 4.20 ms (243 ms)
6 karnp50.qualcomm.com (129.46.90.33)
| 12 Mb/s, -172 us (243 ms), +q 8.96 ms (13.0 KB) *3, 6% dropped
7 unix.ka9q.ampr.org (129.46.90.35)
7 hops, rtt 11.1 ms (243 ms), bottleneck 53.2 Kb/s, pipe 4627 bytes

IPP Lecture 18 - 22

Measurements - Internet, Internet2

353 hr303 hr1829’474.021.18

353 hr343 hr1827’413.920’43

343 hr34 3 hr1822’494.021’12

Pathchar

97 0’25133 5’1898 0’165.76’5

97 0’2588 5’2098 0’165.46’14

97 0’2986 5’1998 0’165.66’10

Pathrate

970’22830’17970’025.50’03

970’07790’04970’015.60’03

970’07980’02960’015.50’03

Cap

Probe

CapacityTimeCapacityTimeCapacityTimeCapacityTime

NTNUUAUCLA-3UCLA-2

To

• CapProbe implemented using PING packets, sent in pairs

IPP Lecture 18 - 23

Bandwidth estimation (pathload)

Sender transmits periodic packet stream of rate R
– K packets, packet size L, interarrival T = L/R

Receiver measures One-Way Delay (OWD) for each packet
– D(k) = tarv(k) - tsnd(k)
– OWD variations: ∆(k) = D(k+1) – D(k)

Independent of clock offset between sender/receiver

IPP Lecture 18 - 24

Example of OWD variations

12-hop path from U-Delaware to U-Oregon

– K=100 packets, A=74Mbps, T=100µsec
– Rleft = 97Mbps, Rright=34Mbps

Increasing OWDs means R>A

Almost constant OWDs means R<A

IPP Lecture 18 - 25

Pathload’s iterative algorithm

Source: send n-th stream with rate R(n)
Receiver:

– Measure OWDs of n-stream
– Check for presence of increasing trend
– Notify sender

Source:
– If “increasing OWDs”, i.e., R(n)>A,

Rmax = R(n)
– Else, R(n) < A,

Rmin = R(n)
– R(n+1) = (Rmax + Rmin) / 2

Exit when Rmax - Rmin < ω

IPP Lecture 18 - 26

Pathload tool
Pathload: also available at www.pathrate.org
– About 10-20 seconds per measurement
– Accurate within 10% as long as path does not include multiple

bottlenecks

IPP Lecture 18 - 27

Bandwidth estimation with iperf
You could manually do rate-based estimation with UDP and
iperf –u –b NNm –c target

Could do estimation with TCP and iperf but due to slow-start, final
datarate not accurate so use iperf –i 1

NOTE: would be nice to have passive tools to measure available bandwidth.
Active probes affect the thing you are trying to measure, e.g. other TCP flows
may backoff in response to your probe packets. Although if you are trying to
figure out how your TCP application is going to perform, using TCP to measure
the available bandwidth may be the right thing…

IPP Lecture 18 - 28

Problems with bandwidth/capacity estimation

Invasive and often slow

Snapshot of path … could change
– Burstiness makes it harder

Layer-2 devices (switches) add to delay but not to TTL, so mess up link-
by-link estimators

Multiple tight links cause underestimation in all avail-bw estimation tools

Probes affect available bandwidth estimation

Not very good at gigabit and higher links

Sender-side estimation techniques are used in Vegas, FAST, Westwood

IPP Lecture 18 - 29

Auto-tuning TCP

Objective of auto-tuning
– Applied bandwidth estimation
– Selecting the perfect SNDBUF/RCVBUF size

Application examples
– NLANR’s ftp
– DRS ftp

Out-of-band auto-tuning
– Net100

Kernel auto-tuning
– Dynamic Right Sizing
– Web100
– Linux 2.6

IPP Lecture 18 - 30

Too small, too big, just right

Window size too small, limit bandwidth

Window size too big
– consume OS memory resources
– Doesn’t improve bandwidth

If bigger than router queue space, can cause loss worse performance
– Add to delay (RTT increases because of q’ing)

Consume router memory resources

OS limits to setsockopt() or default SNDBUF/RCVBUF sizes

If you knew bandwidth-delay product of path, could set it just right,
BUT available bandwidth will vary with load …

Example, 100ms RTT, 1.6 mbs path, 1000 byte packets, Newreno
– Bandwidth delay product window = 20 packets (pkt transmit time: 5 ms)
window datarate RTT maxq
20 1481 105 10
10 721 105 10
40 1481 205 200
40 961 155 10 20 drops

IPP Lecture 18 - 31

TCP flow-control
Socket-layer buffers
– Send buffer: Bs
– Receive buffer: Br

Socket Buffer
Sender Receiver

Socket Layer

TCP Layer WrWs

TCP windows
– Send: Ws <= Bs
– Congestion: Wc
– Receiver (advertised): Wr<= Br

Ws = min {Wc, Wr} either sender or receiver can control window

Ideally, TCP send window Ws should be set to connection’s bandwidth-
delay product
– “Bandwidth”: connection’s fair share
– “Delay”: connection’s RTT
– Achieve efficiency, fairness, no congestion
Recall, TCP probes for path capacity, by increasing cwnd til PACKET
LOSS – let’s try to avoid this by judicious choice of W
– Too small, slow
– Too big, loss and/or added delay (queuing)

IPP Lecture 18 - 32

Socket buffer size
Ws = min {Wc, Wr}
But Wr<= S
– S: rcv socket buffer size

We can limit S so that connection

is limited by receive window: Ws = S

Non-congested path:
– Throughput R(S) = S/T(S)
– R(S) increases with S until it reaches MFT
– MFT: Maximum Feasible Throughput (onset of congestion)
– Objective: set S close to MFT, to avoid any losses and stabilize TCP send

window to a safe value

Congested path:
– Path with losses before start of target transfer
– Limiting S can only reduce throughput

Socket Buffer Size (S)

T
hr

ou
gh

pu
t

R
(S

)

Avail−bw

MFT
Lossy

Throughput
From Padhye’s eq.

IPP Lecture 18 - 33

How to dynamically estimate capacity?
Out-of-band probes or historical data base?

– Use bw-est tools: pathchar etc.
– Network Weather Service

Grid scheduling
Periodic probes: network capacity, CPU load

– Net100 (tuning daemon)
Network-aware ftp (no kernel mods, out of band)

– NLANR ftp (pre-transfer probes)
Packet train of ICMP or UDP packets to estimate RTT and bandwidth
Calculate window size for FTP from bandwidth-delay product

– DRS ftp
Modified GridFTP
Continuously monitor RTT and data rate and adjust buffer size

TCP stack estimates (kernel mods, in band)
– Sender side
– Receiver side

When receive data rate becomes constant, clamp advertised window
– Worry about initial window-scale value … can’t grow bigger than that

IPP Lecture 18 - 34

Sender-side tuning

Mathis, ’98, mods to NetBSD kernel

Receiver must advertise a big window (big RCVBUF)

Window-scale must be “adequate”

If application has not explicitly set SNDBUF, kernel will “grow” SNDBUF
as cwnd grows

– Memory resource will match bandwidth-delay product as measured by cwnd
– Won’t be too small, won’t be too big … just right
– Still can experience packet loss

Helps legacy applications with no options for buffer tuning
– 10x improvement (over system default SNDBUF size)
– No changes to application

Estimation could be adversely affected by reverse path load

IPP Lecture 18 - 35

Receiver side tuning

Receiver adjusts advertised window based on observed bandwidth-
delay product

– Use RTT estimation (DRS) or TCP timestamps for delay estimation
– Grow advertised window in anticipation of slow-start doubling

Still will slightly over-estimate and thus still experience packet loss
But won’t consume unnecessary buffer space at receiver

– Not affected by reverse path traffic

LANL’s Dynamic Right Sizing, mods to Linux

PSC Web100 auto-tuning

Linux 2.6 auto-tuning
– Sender side
– And receiver side

Observe with tcpdump
192.91.245.29.5001 > 160.91.212.75.34287: . ack 1449 win 67
192.91.245.29.5001 > 160.91.212.75.34287: . ack 2897 win 90
192.91.245.29.5001 > 160.91.212.75.34287: . ack 4345 win 113
192.91.245.29.5001 > 160.91.212.75.34287: . ack 5793 win 135

IPP Lecture 18 - 36

PSC receiver side autotuning

Modified linux kernels with emulated path delays

Auto-tuning vs manually set buffer sizes

Window-scale must be big …

IPP Lecture 18 - 37

Net100 TCP Tuning Daemon
Work-around Daemon (WAD) … a hack
– tune unknowing sender/receiver at startup and/or during

flow
– Web100 kernel extensions

pre-set windowscale to allow dynamic tuning
uses netlink to alert daemon of socket open/close (or
poll)
besides existing Web100 buffer tuning, new tuning
parameters and algorithms
knobs to disable Linux 2.4 caching, burst mgt., and
sendstall

– config file with static tuning data
mode specifies dynamic tuning (AIMD options, NTAF buffer size,
concurrent streams)

– daemon periodically polls NTAF for tuning data
– can do out-of-kernel tuning (e.g., Floyd)
– written in C (also Python version)

WAD config file
[bob]

src_addr: 0.0.0.0
src_port: 0
dst_addr: 10.5.128.74
dst_port: 0
mode: 1
sndbuf: 2000000
rcvbuf: 100000
wadai: 6
wadmd: 0.3
maxssth: 100
divide: 1
reorder: 9
sendstall: 0
delack: 0
floyd: 1
kellyai: 0

NTAF is out-of-band path prober
IPP Lecture 18 - 38

Tuning daemon experimental results

Evaluating the tuning daemon in the wild
– emphasis: bulk transfers over high delay/bandwidth nets (Internet2, ESnet)
– tests over: 10GigE/OC192,OC48, OC12, OC3, ATM/VBR, GigE,FDDI,100/10T,cable,

ISDN,wireless (802.11b),dialup
– tests over NISTNet testbed (speed, loss, delay)

Example
– ORNL to PSC, OC12, 80ms RTT
– Network-challenged app. gets 10 mbs (defaualt buffers)
– Same app. tuned by the daemon gets 143 mbs

NISTNet
host

IPP Lecture 18 - 39

Next time …

Using bandwidth estimation in the TCP kernel …
– Delay-based congestion avoidance

TCP Vegas
TCP FAST

– TCP Westwood

