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TCP flavors: Scalable TCP, HS TCP, BI-TCP
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ns      trace-driven simulation

Text example 4.2, TCP competing with mpeg trace of Star Wars
– ~dunigan/ipp05/ns/chap4-2.tcl
– Variable bit-rate trace of video source is big file (not in my directory)

(time, packet length)
– Report datarate and drops for TCP  Tahoe and video stream
– Generate bandwidth plots of UDP and TCP with record procedure
– Use  awk –f e2e.awk out.all | xgraph –m to generate RTT vs time

FTP source TCP sink

video source video client

1 Mbps  
3 ms

10 Mbps  
1 ms

10 Mbps  
1 ms
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chap4-2.tcl

# create UDP source sink
set udp0 [new Agent/UDP]
$ns attach-agent $n2 $udp0
set udpsink0 [new Agent/Null]
$ns attach-agent $n3 $udpsink0
$ns connect $udp0 $udpsink0

# tracefile object
set tfile [new Tracefile]
$tfile filename starwars.nsformat
set trace0 [new Application/Traffic/Trace]
$trace0 attach-tracefile $tfile
$trace0 attach-agent $udp0
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chap4-2.tcl
set mybytes 0
set ubytes 0

proc record {} {
global ns tcp0 tcpsink0 f2 mybytes f1 sink3 ubytes

set delta 0.1
set now [$ns now]
set tombytes [$tcp0 set ndatabytes_ ]
set bw [expr $tombytes - $mybytes]
puts $f2 "$now [expr $bw/$delta*8/1000000]"
set mybytes $tombytes

set tombytes [$sink3 set bytes_ ]
set bw [expr $tombytes - $ubytes]
puts $f1 "$now [expr $bw/$delta*8/1000000]"
set ubytes $tombytes

#Re-schedule the procedure
$ns at [expr $now+$delta] "record“

}
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chap4-2.tcl

UDP has no 
congestion control, 
so TCP gets 
bandwidth only when 
video stream is not 
consuming as much.

Both streams are 
dropping packets
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ns loss models
UDP agents includes, CBR, Pareto, Exponential, and trace-driven

You can also associate a loss model with a link
– droplist

set droplist { 100 102 104 }
set lossylink_ [$ns link $n0 $n1]
set loss_module [new ErrorModel/List]
$loss_module droplist $droplist
$lossylink_ errormodule $loss_module

– Probabilistic  p= 0.001  drop on the average 1 in 1000 packets
set lossrate 0.001
set lossylink_ [$ns link $n0 $n1]
set loss_module [new ErrorModel]
$loss_module set rate_ $lossrate
set u [new RandomVariable/Uniform]
set rng [new RNG]
$rng seed 57643
$u use-rng $rng
$loss_module ranvar $u
$lossylink_ errormodule $loss_module

Use ns random numbers to select start times
set sec [expr int([$rng uniform 0.1 [expr $endtime/20]])]
set frac [expr int([$rng uniform 0 25])]
set starttime $sec.$frac
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More tracing and monitoring in ns

Trace/Var
– Record new values of ns variable every time 

it changes
set tf [open cwnd.tr w]
set tracer [new Trace/Var]
$tracer attach $tf
$tcp trace cwnd_ $tracer

output file
f t3.090184 a_o83 ncwnd_ v6.79157
f t3.109195 a_o83 ncwnd_ v6.93882
f t3.118795 a_o83 ncwnd_ v7.08293

– record procedure samples good enough

Event trace (TCP state info)
– Inserted in trace-all file
– $ns eventtrace-all   [$file]

E 1.766513 0 3 TCP TIMEOUT 1 54 10

E 1.766513 0 3 TCP SLOW_START 1 54 1

E 2.832301 0 3 TCP NEWRENO_FAST_RETX 1 149 13

E 2.837195 0 3 TCP NEWRENO_FAST_RECOVERY 1 149 6

src dst event               fid seq# cwnd

IPP Lecture 17 - 8

Monitoring queues in ns

Tracing queue variables at specified interval
set qmon [$ns monitor-queue $n2 $n3 [open qm.out w] 0.1];
[$ns link $n2 $n3] queue-sample-timeout;
File:  1.3 2 3 1040.0 1.0 5 2 2 4120 1080 2000
time src dst avrgB avrgpkts arrivals depart drops barriv bdepart bdrops

Monitoring a queue
– Snapshot of queue activity with your record  or finish procedure
– Variables pdrops_ pdepartures_ parrivals_ bdrops_ bdepartures_ barrivals_
set qmon [$ns monitor-queue $n0 $n1 1 2]
set curr_qsize [$qmon set size_]
puts “drops [$qmon set pdrops_]  "

Monitoring a flow
– If you need to know which flows are experiencing drops
– Need to set flow ids    $tcp set fid_ 1
set fm [$ns makeflowmon Fid]
$ns attach-fmon [$ns link $r1 $r2] $fm 0
foreach f  [$fm flows] {

puts " flow [$f set flowid_]  drops: [$f set pdrops_]"
}
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ns summary
ns popular in the network research community

– Free
– Considerable testing of ns TCP implementations (credibility)
– Easy to add new variations 

Add a little C++, adjust the Makefile and defaults.tcl
– Other features: routing, LAN, wireless, multicast 

Awkward to setup topologies
– No drag & drop
– C++ and Tcl pretty ugly

Not suitable for huge topologies
– Though scripting loops are better than doing 5000 drag & drops

All simulations are going to be slow for lots of nodes and lots of packets
– Need parallelism … open research

Alternatives
– ssfnet – written in java  (credibility -- validation of TCP flavors?)
– OPNET
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OPNET

Industrial strength simulator – good credibility

Big $’s  though “free” for university/researchers
– Technical support vs “ns mailing lists”

Nice GUI for topology design (drag & drop)

Presentation of results more intuitive

More efficient (faster?) than ns, better for larger simulations

LAN simulations let you drag & drop particular vendor router/switches

Some TCP customizations supported (C like) 
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OPNET GUI
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Theory, experiment, simulation

Live internet tests
– See results in ultimate environment

– Real TCP stacks/OS, traffic

– Vary time and host/paths

– Worry about impact? 

Test beds
– Controlled traffic, but real OS

– Usually LAN based, no queuing

– Repeatable

– Not very good for cross-traffic

Emulators
– Same as testbed

– Plus control delay, loss, data rates, 
dup’s, out-of-order

– Easy to reconfigure

Need tools to probe and measure

Simulations
– Easily reconfigured

Complex topology

Vary TCP flavor

– Repeatable

– Detailed feedback/instrumentation

– Add delay, loss, cross-traffic, 
queues

– Randomness for confidence

– Investigate “new” networks/protocols

– cheap

– Can be slow

– Not real TCP
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TCP flavors

Some modifications to TCP were to make it more net friendly
– Slow-start, AIMD, expo. timeouts, delayed ACKs, Nagle

Some optimizations to make a TCP flow faster
– Fast recovery, fast retransmit, SACK, FACK

Initial evolution:  TCP Tahoe, Reno, NewReno, SACK, FACK
– Use packet loss to detect congestion and probe for bandwidth
– AIMD(1,0.5) to backoff quickly and slowly increase speed

Slow-start options for high speed

TCP accelerants for long, fat nets
– HS TCP, Scalable TCP, BI-TCP

TCP variants to avoid packet loss
– Vegas/FAST
– Use bandwidth and delay estimates to select cwnd/ssthresh

TCP Westwood
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slow-start

Motivation: restore ACK clocking  
– When: intial start up, after packet loss, after idle period
– Avoid blast of W packets (full window)
– cwnd 1

RFC’s suggest a TCP stack can choose to start with cwnd = 4
– Speeds startup (2 less RTT’s), get ACK clocking going quicker
– Acceptable blast  (ns  windowInitOption_  windowInit_)

Open research, TCP quick-start, faster rate startup with router “approval”

For long, fat nets (high speed, high delay), Floyd suggests slowing slow-start 
after some number of RTT’s

– Slow-start could be injecting thousands of packets into net at NIC speed
– We had certain paths that often experienced packet loss in slow-start 
– NOTE: TCP Vegas also has a slow-start moderator parameter (λ)
– NOTE: slow-start can overshoot “available bandwith” by a factor of 2

Linear phase overshoot by only 1 segment (or k segments if “virtual MSS”)
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Limited slow-start for large congestion windows (Floyd)

RFC 3742, new variable max_ssthresh (typically 100)
– Normal slow-start at first
– Slow-start increment decreases with growing cwnd

For each arriving ACK in slow-start: 
if (cwnd <= max_ssthresh) cwnd += MSS;  /* standard slow-start */
else {
K = int(cwnd/(0.5 *  max_ssthresh)); 
cwnd += int(MSS/K);

}

Anecdotal evidence of 
improved slow-start 
between ORNL and 
NERSC
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TCP for long Fat Networks (LFN)
TCP linear recovery on paths with high bandwidth and long RTT

– Takes cwnd/2 RTT’s and slope of line   is MSS/RTT2 /sec bits/sec
– 10 Gig, 100 ms RTT needs window of 83,333 segments

Recovering from cwnd/2 takes 4,166 seconds – over an hour!

Some not so TCP-friendly proposals to speed recovery for LFNs
– Floyd’s HS TCP  (a,b) a function of current cwnd (table lookup)
– Scalable TCP (1%,1/8), increase cwnd by 1% each ACK
– Virtual MSS (k, ½ ), increase cwnd by k/cwnd for each ACK

Jumbo frame (MTU=9000) is k=6 with added benefits

Easy to experiment with AIMD in ns

$tcp set decrease_num_ 0.875

$tcp set increase_num_ 32
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Response Function of AIMD(a,b)

5.0
5.15

pRTT
MSSR =

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

Packet Loss Probability

Th
ro

ug
hp

ut
 (M

bp
s)

TCP

AIMD

5.0
2.1

pRTT
MSSR =TCP:

AIMD(32,1/8):

The throughput of AIMD 
is always about 13 times 
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Properties of AIMD

Bandwidth 
ScalableBandwidth Scalability

The ability to achieve 10Gbps 
with a reasonable packet loss 
probability NOT TCP 

Friendly
TCP-Friendliness

The ability to share bandwidth with 
TCP connections on low-speed 
networks
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Scalable TCP

Aggressive MIMD for high speed nets (Tom Kelley)
– Loss event:   cwnd = 0.875 * cwnd (1/8 instead of ½ )
– With each ACK:   cwnd = cwnd + 0.01  (when cwnd > 16)

traditional TCP AIMD                                        scalable TCP 
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MIMD and scalable TCP

Scalable TCP uses multiplicative 
decrease (1/8) and multiplicative 
increase (0.01) MIMD

Recall from our control system 
model, MIMD does not converge!  
(green line)

flow 1’s allocation x1

flow 2’s 
allocation 
x2 P0 optimum

Equi-Fairness 
line (MIMD)
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Scalable TCP response curve

Response curve for TCP:  w = c/√p for SCTP:  w =k/p
– STCP has a linear response function, scale-invariant

Use standard TCP if cwnd < 16
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Scalable TCP
For RTT = 200 ms, k=0.01,  (note: scale invariant)

recovery time
Rate Standard TCP  Scalable TCP
1Mbps 1.7s 2.7s
10Mbps 17s 2.7s
100Mbps 2mins 2.7s
1Gbps 28mins 2.7s
10Gbps 4hrs 43mins 2.7s

I have modified ns to support scalable TCP  (with Reno whatever)
$tcp set windowOption_ 9
$tcp set decrease_num_ 0.875
$tcp set k_parameter_ 0.01

Note: (1) big window with 140 
ms RTT, (2) window cut by 1/8,  
(3) fast recovery while 1/cwnd 
takes forever   

Is it friendly, stable, fair?
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High Speed TCP (HS TCP)

Floyd, ’02, RFC 3649 (experimental)

TCP linear recovery on paths with high bandwidth and long RTT
– Takes cwnd/2 RTT’s and slope of line   is MSS/RTT2 /sec bits/sec
– 10 Gig, 100 ms RTT needs window of 83,333 segments
– From inverse square root p law, if you want to sustain a data rate of 10 gbs

over a 100 ms RTT path, your loss rate must be less than 10-14

Floyd proposes a modified response function that requires a more
tractable probability of 10-7 for 83,000 segment window

– Standard TCP sending rate (S) in segments/RTT   S = 1.22/(p0.5)
– HS TCP      S = 0.15/(p0.82)

At low loss probabilities and big windows, you want TCP to scale

When loss probability is high (10-3 or larger), you want to be TCP 
friendly because net is probably congested

– HS TCP, STCP,  and BI-TCP have low window threshold where if         
cwnd < low_win then use standard TCP AIMD (1, ½ )

– Low window threshold is 38 segments for HS TCP
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HS TCP
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HS TCP implementation

To get the AIMD(a,b) for HS TCP, need to solve the 
exponential equation for current cwnd, w

Rather than have the kernel solve that equation during 
packet processing, we use a table lookup based on 
current congestion window, w, to get decrease factor 
and increase factor.

Example, if cwnd is 1058, then reduce by 1/3 and 
increment is 8

If cwnd is 83,000 segments, then our decrease factor is 
0.1 (10%), and our increment is 72 segments per RTT 
(0.1%)

More aggressive than standard TCP, but not as 
aggressive as Scalable TCP

Experimental implementations in Linux (ORNL) and ns
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HS TCP in ns

In ns   $tcp set windowOption_ 8

Example, RTT 140 ms,  window of 3500 segments
– From table W=3500 decrease by 0.26, add 16 segments per RTT
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HS TCP and scalable TCP in the wild

Modified Linux kernel with HS TCP and scalable TCP 

3 tests between ORNL and CERN with a UDP blast at about 3 seconds

cwnd (Mbytes) information collected by instrumented kernel (Web100)
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Response Functions of HSTCP and STCP
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HSTCP and STCP are 
both bandwidth scalable 
and TCP friendly
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BI-TCP (NCSU)

AIMD mods to recover fast at larger windows (scalable), but be TCP 
friendly at small windows

Adjust for RTT unfairness

Combines additive increase with binary search increase
– When window is large, additive increase with large increment provides

Scalability
Linear RTT fairness

– With small congestion window, binary search increase provides TCP-
friendly response

Currently in Linux 2.6 kernel, and there are mods for ns

Many of following slides are from NCSU powerpoint (Rhee & Xu)
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TCP recovery and RTT fairness
Loss recovery is sensitive to RTT

– Slow-start doubles cwnd (data rate) 
every RTT

– Linear recovery increments cwnd by 
one  segment  (MSS) every RTT

Nearby host will recover faster than 
distant host (droptail queue)

– Example chap. 11 text
– Congestion
– Red flow 1349 kbs
– Green 60 kbs
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RTT Fairness on High-Speed Networks
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The RTT Fairness Index (or the throughput ratio of two flows) on high-
speed networks is 

Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase Congestion Control for Fast Long-
Distance Networks", in Proceedings of IEEE INFOCOM 2004, March, 2004, HongKong

On high speed networks, the RTT fairness of a protocol depends on 
the exponent d in the response function 
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If the response function is:                   then the RTT Fairness is:
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The figure is shown in log-
log scale, so exponent d in 
the response function is 
the slope of the line in the 
figure

The slope of the line 
determines the RTT 
fairness of a protocol on 
high-speed networks
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Simulation Results of RTT Fairness

3891271STCP

107291HSTCP

2261AIMD

631Inverse RTT  Ratio of two flows

Simulation setup:  BDP Buffer, Drop Tail,  Reverse Traffic, Forward 
Background Traffic (short-lived TCP, Web Traffic) 

Throughout ratio of two flows on a 2.5Gbps link

Example: for STCP if RTT ratio is 6, short RTT flow 389 times faster!
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BI-TCP Design Goal

TCP Fairness

Scalability, RTT Fairness
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BIC (Binary Increase Congestion control)

BIC adaptively increase cwnd, and decrease cwnd by 1/8

Packet loss

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss
cwnd

Packet loss

cwnd = cwnd + 1

cwnd = cwnd + f(cwnd, history)

cwnd = cwnd * (1-1/2)

cwnd = cwnd * (1-1/8)

TCP
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A Search Problem

A Search Problem
– consider the increase part of congestion avoidance as a search 

problem, in which a connection looks for the available bandwidth by 
comparing its current throughput with the available bandwidth, and 
adjusting cwnd accordingly. 

How does TCP find the available 
bandwidth?

– Linear search
while (no packet loss){

cwnd++;

}

Q: How to compare R with A?
R = current throughput

= cwnd/RTT
A = available bandwidth

A: Check for packet losses
– No packet loss:  R <= A
– Packet losses :  R > A
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BI-TCP: Binary Search with Smax and Smin

Binary search
while (Wmin <= Wmax){ 

inc = (Wmin+Wmax)/2 - cwnd;
if (inc > Smax)

inc = Smax;
else if (inc < Smin)

inc = Smin;
cwnd = cwnd + inc;
if (no packet losses)

Wmin = cwnd;
else

break;
}

Wmax: Max Window

Wmin:  Min Window

Smax:  Max Increment
– Cwnd > Smax do linear with 

Smax/cwnd
– Binary search would be  too 

fast
– 32

Smin:   Min Increment
– Turn off bin search
– 0.01

low_window:  14
– Cwnd smaller than this use 

standard TCP AIMD
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Binary Search with Smax and Smin
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Available Bandwidth

Search is aggressive at first, moderating as it 
approaches target window size. Smin and 
Smax are tunable parameters.
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BI-TCP peformance comparison

RTT fairness, 2 flows 2.5 Gps link

Feature comparison

Good packet loss performance

Throughput ratio
Inverse RTT ratio:        1           3         6

BIC              1         12       38
AIMD            1           6       22

HSTCP          1         29     107
STCP          1       127     389

BI-TCP   AIMD   HSTCP  STCP
Scalable                  Y           Y            Y          Y
TCP friendly            Y          no            Y          Y
Fair                          Y           Y            no       no
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Packet loss vs. Buffer Size
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BI-TCP in ns
NCSU has mods to tcp.cc and tcp.h for BI-TCP for ns
In your tcl

$tcp set windowOption_ 12

BI-TCP ns simulation topology
– Randomized start times
– 20-50% background web traffic
– 25 small TCP flows
– 20% traffic on reverse path
– 50 minutes real time for 3 minutes

’05 NCSU proposed CUBIC

#ns default parameters for BI-TCP
Agent/TCP set bs_beta_ 0.875
Agent/TCP set bs_max_increment_ 32
Agent/TCP set bs_min_increment_ 0.01
Agent/TCP set bs_log_factor_ 4
Agent/TCP set bs_fast_convergence_ 1
Agent/TCP set low_window_ 14
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TCP for LFN’s

BI-TCP is in Linux 2.6 kernel
– S.ysctl’s

net.ipv4.tcp_bic_low_window = 14
net.ipv4.tcp_bic_fast_convergence = 1
net.ipv4.tcp_bic = 1

HS TCP, STCP, and BI-TCP try to improve TCP performance by 
recovering faster from packet loss

Recall (lecture 14) SLAC’s results for iperf tests across the Internet
– TCP Reno single stream has low performance and is unstable on long 

distances
– FAST TCP is very handicapped by reverse traffic
– STCP is very aggressive on long distances
– Bi-TCP performs very well in almost all cases

We will look at FAST and Vegas shortly
– Delay-based congestion avoidance 

Try to improve TCP performance by avoiding loss in the first place! 

We will also eventually look at parallel TCP streams to speed recovery

IPP Lecture 17 - 44

Next time …

Improving TCP performance by (automatically) selecting “best”
buffer/window size

– Bandwidth estimation
– Auto-tuning

assignments 7 and 8


