
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 17

ns

OPnet

TCP flavors: Scalable TCP, HS TCP, BI-TCP

IPP Lecture 17 - 2

ns trace-driven simulation

Text example 4.2, TCP competing with mpeg trace of Star Wars
– ~dunigan/ipp05/ns/chap4-2.tcl
– Variable bit-rate trace of video source is big file (not in my directory)

(time, packet length)
– Report datarate and drops for TCP Tahoe and video stream
– Generate bandwidth plots of UDP and TCP with record procedure
– Use awk –f e2e.awk out.all | xgraph –m to generate RTT vs time

FTP source TCP sink

video source video client

1 Mbps
3 ms

10 Mbps
1 ms

10 Mbps
1 ms

IPP Lecture 17 - 3

chap4-2.tcl

create UDP source sink
set udp0 [new Agent/UDP]
$ns attach-agent $n2 $udp0
set udpsink0 [new Agent/Null]
$ns attach-agent $n3 $udpsink0
$ns connect $udp0 $udpsink0

tracefile object
set tfile [new Tracefile]
$tfile filename starwars.nsformat
set trace0 [new Application/Traffic/Trace]
$trace0 attach-tracefile $tfile
$trace0 attach-agent $udp0

IPP Lecture 17 - 4

chap4-2.tcl
set mybytes 0
set ubytes 0

proc record {} {
global ns tcp0 tcpsink0 f2 mybytes f1 sink3 ubytes

set delta 0.1
set now [$ns now]
set tombytes [$tcp0 set ndatabytes_]
set bw [expr $tombytes - $mybytes]
puts $f2 "$now [expr $bw/$delta*8/1000000]"
set mybytes $tombytes

set tombytes [$sink3 set bytes_]
set bw [expr $tombytes - $ubytes]
puts $f1 "$now [expr $bw/$delta*8/1000000]"
set ubytes $tombytes

#Re-schedule the procedure
$ns at [expr $now+$delta] "record“

}

IPP Lecture 17 - 5

chap4-2.tcl

UDP has no
congestion control,
so TCP gets
bandwidth only when
video stream is not
consuming as much.

Both streams are
dropping packets

IPP Lecture 17 - 6

ns loss models
UDP agents includes, CBR, Pareto, Exponential, and trace-driven

You can also associate a loss model with a link
– droplist

set droplist { 100 102 104 }
set lossylink_ [$ns link $n0 $n1]
set loss_module [new ErrorModel/List]
$loss_module droplist $droplist
$lossylink_ errormodule $loss_module

– Probabilistic p= 0.001 drop on the average 1 in 1000 packets
set lossrate 0.001
set lossylink_ [$ns link $n0 $n1]
set loss_module [new ErrorModel]
$loss_module set rate_ $lossrate
set u [new RandomVariable/Uniform]
set rng [new RNG]
$rng seed 57643
$u use-rng $rng
$loss_module ranvar $u
$lossylink_ errormodule $loss_module

Use ns random numbers to select start times
set sec [expr int([$rng uniform 0.1 [expr $endtime/20]])]
set frac [expr int([$rng uniform 0 25])]
set starttime $sec.$frac

IPP Lecture 17 - 7

More tracing and monitoring in ns

Trace/Var
– Record new values of ns variable every time

it changes
set tf [open cwnd.tr w]
set tracer [new Trace/Var]
$tracer attach $tf
$tcp trace cwnd_ $tracer

output file
f t3.090184 a_o83 ncwnd_ v6.79157
f t3.109195 a_o83 ncwnd_ v6.93882
f t3.118795 a_o83 ncwnd_ v7.08293

– record procedure samples good enough

Event trace (TCP state info)
– Inserted in trace-all file
– $ns eventtrace-all [$file]

E 1.766513 0 3 TCP TIMEOUT 1 54 10

E 1.766513 0 3 TCP SLOW_START 1 54 1

E 2.832301 0 3 TCP NEWRENO_FAST_RETX 1 149 13

E 2.837195 0 3 TCP NEWRENO_FAST_RECOVERY 1 149 6

src dst event fid seq# cwnd

IPP Lecture 17 - 8

Monitoring queues in ns

Tracing queue variables at specified interval
set qmon [$ns monitor-queue $n2 $n3 [open qm.out w] 0.1];
[$ns link $n2 $n3] queue-sample-timeout;
File: 1.3 2 3 1040.0 1.0 5 2 2 4120 1080 2000
time src dst avrgB avrgpkts arrivals depart drops barriv bdepart bdrops

Monitoring a queue
– Snapshot of queue activity with your record or finish procedure
– Variables pdrops_ pdepartures_ parrivals_ bdrops_ bdepartures_ barrivals_
set qmon [$ns monitor-queue $n0 $n1 1 2]
set curr_qsize [$qmon set size_]
puts “drops [$qmon set pdrops_] "

Monitoring a flow
– If you need to know which flows are experiencing drops
– Need to set flow ids $tcp set fid_ 1
set fm [$ns makeflowmon Fid]
$ns attach-fmon [$ns link $r1 $r2] $fm 0
foreach f [$fm flows] {

puts " flow [$f set flowid_] drops: [$f set pdrops_]"
}

IPP Lecture 17 - 9

ns summary
ns popular in the network research community

– Free
– Considerable testing of ns TCP implementations (credibility)
– Easy to add new variations

Add a little C++, adjust the Makefile and defaults.tcl
– Other features: routing, LAN, wireless, multicast

Awkward to setup topologies
– No drag & drop
– C++ and Tcl pretty ugly

Not suitable for huge topologies
– Though scripting loops are better than doing 5000 drag & drops

All simulations are going to be slow for lots of nodes and lots of packets
– Need parallelism … open research

Alternatives
– ssfnet – written in java (credibility -- validation of TCP flavors?)
– OPNET

IPP Lecture 17 - 10

OPNET

Industrial strength simulator – good credibility

Big $’s though “free” for university/researchers
– Technical support vs “ns mailing lists”

Nice GUI for topology design (drag & drop)

Presentation of results more intuitive

More efficient (faster?) than ns, better for larger simulations

LAN simulations let you drag & drop particular vendor router/switches

Some TCP customizations supported (C like)

IPP Lecture 17 - 11

OPNET GUI

IPP Lecture 17 - 12

Theory, experiment, simulation

Live internet tests
– See results in ultimate environment

– Real TCP stacks/OS, traffic

– Vary time and host/paths

– Worry about impact?

Test beds
– Controlled traffic, but real OS

– Usually LAN based, no queuing

– Repeatable

– Not very good for cross-traffic

Emulators
– Same as testbed

– Plus control delay, loss, data rates,
dup’s, out-of-order

– Easy to reconfigure

Need tools to probe and measure

Simulations
– Easily reconfigured

Complex topology

Vary TCP flavor

– Repeatable

– Detailed feedback/instrumentation

– Add delay, loss, cross-traffic,
queues

– Randomness for confidence

– Investigate “new” networks/protocols

– cheap

– Can be slow

– Not real TCP

IPP Lecture 17 - 13

TCP flavors

Some modifications to TCP were to make it more net friendly
– Slow-start, AIMD, expo. timeouts, delayed ACKs, Nagle

Some optimizations to make a TCP flow faster
– Fast recovery, fast retransmit, SACK, FACK

Initial evolution: TCP Tahoe, Reno, NewReno, SACK, FACK
– Use packet loss to detect congestion and probe for bandwidth
– AIMD(1,0.5) to backoff quickly and slowly increase speed

Slow-start options for high speed

TCP accelerants for long, fat nets
– HS TCP, Scalable TCP, BI-TCP

TCP variants to avoid packet loss
– Vegas/FAST
– Use bandwidth and delay estimates to select cwnd/ssthresh

TCP Westwood

IPP Lecture 17 - 14

slow-start

Motivation: restore ACK clocking
– When: intial start up, after packet loss, after idle period
– Avoid blast of W packets (full window)
– cwnd 1

RFC’s suggest a TCP stack can choose to start with cwnd = 4
– Speeds startup (2 less RTT’s), get ACK clocking going quicker
– Acceptable blast (ns windowInitOption_ windowInit_)

Open research, TCP quick-start, faster rate startup with router “approval”

For long, fat nets (high speed, high delay), Floyd suggests slowing slow-start
after some number of RTT’s

– Slow-start could be injecting thousands of packets into net at NIC speed
– We had certain paths that often experienced packet loss in slow-start
– NOTE: TCP Vegas also has a slow-start moderator parameter (λ)
– NOTE: slow-start can overshoot “available bandwith” by a factor of 2

Linear phase overshoot by only 1 segment (or k segments if “virtual MSS”)

IPP Lecture 17 - 15

Limited slow-start for large congestion windows (Floyd)

RFC 3742, new variable max_ssthresh (typically 100)
– Normal slow-start at first
– Slow-start increment decreases with growing cwnd

For each arriving ACK in slow-start:
if (cwnd <= max_ssthresh) cwnd += MSS; /* standard slow-start */
else {
K = int(cwnd/(0.5 * max_ssthresh));
cwnd += int(MSS/K);

}

Anecdotal evidence of
improved slow-start
between ORNL and
NERSC

IPP Lecture 17 - 16

TCP for long Fat Networks (LFN)
TCP linear recovery on paths with high bandwidth and long RTT

– Takes cwnd/2 RTT’s and slope of line is MSS/RTT2 /sec bits/sec
– 10 Gig, 100 ms RTT needs window of 83,333 segments

Recovering from cwnd/2 takes 4,166 seconds – over an hour!

Some not so TCP-friendly proposals to speed recovery for LFNs
– Floyd’s HS TCP (a,b) a function of current cwnd (table lookup)
– Scalable TCP (1%,1/8), increase cwnd by 1% each ACK
– Virtual MSS (k, ½), increase cwnd by k/cwnd for each ACK

Jumbo frame (MTU=9000) is k=6 with added benefits

Easy to experiment with AIMD in ns

$tcp set decrease_num_ 0.875

$tcp set increase_num_ 32

IPP Lecture 17 - 17

Response Function of AIMD(a,b)

5.0
5.15

pRTT
MSSR =

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

Packet Loss Probability

Th
ro

ug
hp

ut
 (M

bp
s)

TCP

AIMD

5.0
2.1

pRTT
MSSR =TCP:

AIMD(32,1/8):

The throughput of AIMD
is always about 13 times
larger than that of TCP

Recall our inverse sqrt p law:
pRTT

bbaMSS 2/)2(−

IPP Lecture 17 - 18

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

Packet Loss Probability

Th
ro

ug
hp

ut
 (M

bp
s)

TCP

AIMD

Properties of AIMD

Bandwidth
ScalableBandwidth Scalability

The ability to achieve 10Gbps
with a reasonable packet loss
probability NOT TCP

Friendly
TCP-Friendliness

The ability to share bandwidth with
TCP connections on low-speed
networks

IPP Lecture 17 - 19

Scalable TCP

Aggressive MIMD for high speed nets (Tom Kelley)
– Loss event: cwnd = 0.875 * cwnd (1/8 instead of ½)
– With each ACK: cwnd = cwnd + 0.01 (when cwnd > 16)

traditional TCP AIMD scalable TCP

IPP Lecture 17 - 20

MIMD and scalable TCP

Scalable TCP uses multiplicative
decrease (1/8) and multiplicative
increase (0.01) MIMD

Recall from our control system
model, MIMD does not converge!
(green line)

flow 1’s allocation x1

flow 2’s
allocation
x2 P0 optimum

Equi-Fairness
line (MIMD)

IPP Lecture 17 - 21

Scalable TCP response curve

Response curve for TCP: w = c/√p for SCTP: w =k/p
– STCP has a linear response function, scale-invariant

Use standard TCP if cwnd < 16

IPP Lecture 17 - 22

Scalable TCP
For RTT = 200 ms, k=0.01, (note: scale invariant)

recovery time
Rate Standard TCP Scalable TCP
1Mbps 1.7s 2.7s
10Mbps 17s 2.7s
100Mbps 2mins 2.7s
1Gbps 28mins 2.7s
10Gbps 4hrs 43mins 2.7s

I have modified ns to support scalable TCP (with Reno whatever)
$tcp set windowOption_ 9
$tcp set decrease_num_ 0.875
$tcp set k_parameter_ 0.01

Note: (1) big window with 140
ms RTT, (2) window cut by 1/8,
(3) fast recovery while 1/cwnd
takes forever

Is it friendly, stable, fair?

IPP Lecture 17 - 23

High Speed TCP (HS TCP)

Floyd, ’02, RFC 3649 (experimental)

TCP linear recovery on paths with high bandwidth and long RTT
– Takes cwnd/2 RTT’s and slope of line is MSS/RTT2 /sec bits/sec
– 10 Gig, 100 ms RTT needs window of 83,333 segments
– From inverse square root p law, if you want to sustain a data rate of 10 gbs

over a 100 ms RTT path, your loss rate must be less than 10-14

Floyd proposes a modified response function that requires a more
tractable probability of 10-7 for 83,000 segment window

– Standard TCP sending rate (S) in segments/RTT S = 1.22/(p0.5)
– HS TCP S = 0.15/(p0.82)

At low loss probabilities and big windows, you want TCP to scale

When loss probability is high (10-3 or larger), you want to be TCP
friendly because net is probably congested

– HS TCP, STCP, and BI-TCP have low window threshold where if
cwnd < low_win then use standard TCP AIMD (1, ½)

– Low window threshold is 38 segments for HS TCP
IPP Lecture 17 - 24

HS TCP

IPP Lecture 17 - 25

HS TCP implementation

To get the AIMD(a,b) for HS TCP, need to solve the
exponential equation for current cwnd, w

Rather than have the kernel solve that equation during
packet processing, we use a table lookup based on
current congestion window, w, to get decrease factor
and increase factor.

Example, if cwnd is 1058, then reduce by 1/3 and
increment is 8

If cwnd is 83,000 segments, then our decrease factor is
0.1 (10%), and our increment is 72 segments per RTT
(0.1%)

More aggressive than standard TCP, but not as
aggressive as Scalable TCP

Experimental implementations in Linux (ORNL) and ns

IPP Lecture 17 - 26

HS TCP in ns

In ns $tcp set windowOption_ 8

Example, RTT 140 ms, window of 3500 segments
– From table W=3500 decrease by 0.26, add 16 segments per RTT

IPP Lecture 17 - 27

HS TCP and scalable TCP in the wild

Modified Linux kernel with HS TCP and scalable TCP

3 tests between ORNL and CERN with a UDP blast at about 3 seconds

cwnd (Mbytes) information collected by instrumented kernel (Web100)

IPP Lecture 17 - 28

Response Functions of HSTCP and STCP

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

Packet Loss Probability

Th
ro

ug
hp

ut
 (M

bp
s)

TCP

AIMD

HSTCP

STCP

835.0
12.0

pRTT
MSSR =HSTCP:

pRTT
MSSR 08.0

=STCP:

Bandwidth Scalable

TCP Friendly

HSTCP and STCP are
both bandwidth scalable
and TCP friendly

IPP Lecture 17 - 29

BI-TCP (NCSU)

AIMD mods to recover fast at larger windows (scalable), but be TCP
friendly at small windows

Adjust for RTT unfairness

Combines additive increase with binary search increase
– When window is large, additive increase with large increment provides

Scalability
Linear RTT fairness

– With small congestion window, binary search increase provides TCP-
friendly response

Currently in Linux 2.6 kernel, and there are mods for ns

Many of following slides are from NCSU powerpoint (Rhee & Xu)

IPP Lecture 17 - 30

TCP recovery and RTT fairness
Loss recovery is sensitive to RTT

– Slow-start doubles cwnd (data rate)
every RTT

– Linear recovery increments cwnd by
one segment (MSS) every RTT

Nearby host will recover faster than
distant host (droptail queue)

– Example chap. 11 text
– Congestion
– Red flow 1349 kbs
– Green 60 kbs

IPP Lecture 17 - 31

RTT Fairness on High-Speed Networks

dp
c

RTT
MSSR=

For a protocol with the following response function, where c and
d are protocol-related constants.

d

RTT
RTT −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 1
1

1

2

The RTT Fairness Index (or the throughput ratio of two flows) on high-
speed networks is

Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase Congestion Control for Fast Long-
Distance Networks", in Proceedings of IEEE INFOCOM 2004, March, 2004, HongKong

On high speed networks, the RTT fairness of a protocol depends on
the exponent d in the response function

IPP Lecture 17 - 32

If the response function is: then the RTT Fairness is:

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

Packet Loss Probability

Pa
ck

et
s/

R
TT

TCP

AIMD

HSTCP

STCP

Slope Determines the RTT Fairness

dp
c

RTT
MSSpR =)(

d

RTT
RTT −

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ 1
1

1

2

The figure is shown in log-
log scale, so exponent d in
the response function is
the slope of the line in the
figure

The slope of the line
determines the RTT
fairness of a protocol on
high-speed networks

IPP Lecture 17 - 33

Simulation Results of RTT Fairness

3891271STCP

107291HSTCP

2261AIMD

631Inverse RTT Ratio of two flows

Simulation setup: BDP Buffer, Drop Tail, Reverse Traffic, Forward
Background Traffic (short-lived TCP, Web Traffic)

Throughout ratio of two flows on a 2.5Gbps link

Example: for STCP if RTT ratio is 6, short RTT flow 389 times faster!

IPP Lecture 17 - 34

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02

Packet Loss Probability

Th
ro

ug
hp

ut
 (M

bp
s)

TCP
AIMD
HSTCP
STCP
BIC

BI-TCP Design Goal

TCP Fairness

Scalability, RTT Fairness

IPP Lecture 17 - 35

BIC (Binary Increase Congestion control)

BIC adaptively increase cwnd, and decrease cwnd by 1/8

Packet loss

Time (RTT)Slow start Congestion avoidance

Packet loss Packet loss
cwnd

Packet loss

cwnd = cwnd + 1

cwnd = cwnd + f(cwnd, history)

cwnd = cwnd * (1-1/2)

cwnd = cwnd * (1-1/8)

TCP

IPP Lecture 17 - 36

A Search Problem

A Search Problem
– consider the increase part of congestion avoidance as a search

problem, in which a connection looks for the available bandwidth by
comparing its current throughput with the available bandwidth, and
adjusting cwnd accordingly.

How does TCP find the available
bandwidth?

– Linear search
while (no packet loss){

cwnd++;

}

Q: How to compare R with A?
R = current throughput

= cwnd/RTT
A = available bandwidth

A: Check for packet losses
– No packet loss: R <= A
– Packet losses : R > A

IPP Lecture 17 - 37

BI-TCP: Binary Search with Smax and Smin

Binary search
while (Wmin <= Wmax){

inc = (Wmin+Wmax)/2 - cwnd;
if (inc > Smax)

inc = Smax;
else if (inc < Smin)

inc = Smin;
cwnd = cwnd + inc;
if (no packet losses)

Wmin = cwnd;
else

break;
}

Wmax: Max Window

Wmin: Min Window

Smax: Max Increment
– Cwnd > Smax do linear with

Smax/cwnd
– Binary search would be too

fast
– 32

Smin: Min Increment
– Turn off bin search
– 0.01

low_window: 14
– Cwnd smaller than this use

standard TCP AIMD

IPP Lecture 17 - 38

Binary Search with Smax and Smin

0

32

64

96

128

160

192

224

256

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (RTT)

cw
nd

Linear Search

Binary Search with Smax and Smin

Smin

Smax

Wmax

Wmin

Available Bandwidth

Search is aggressive at first, moderating as it
approaches target window size. Smin and
Smax are tunable parameters.

IPP Lecture 17 - 39

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

Packet Loss Probability

P
ac

ke
ts

/R
TT

TCP
AIMD
HSTCP
STCP
BIC

Response Functions

Bandwidth scalability RTT Fairness

TCP-Friendliness

IPP Lecture 17 - 40

BI-TCP peformance comparison

RTT fairness, 2 flows 2.5 Gps link

Feature comparison

Good packet loss performance

Throughput ratio
Inverse RTT ratio: 1 3 6

BIC 1 12 38
AIMD 1 6 22

HSTCP 1 29 107
STCP 1 127 389

BI-TCP AIMD HSTCP STCP
Scalable Y Y Y Y
TCP friendly Y no Y Y
Fair Y Y no no

IPP Lecture 17 - 41

Packet loss vs. Buffer Size

IPP Lecture 17 - 42

BI-TCP in ns
NCSU has mods to tcp.cc and tcp.h for BI-TCP for ns
In your tcl

$tcp set windowOption_ 12

BI-TCP ns simulation topology
– Randomized start times
– 20-50% background web traffic
– 25 small TCP flows
– 20% traffic on reverse path
– 50 minutes real time for 3 minutes

’05 NCSU proposed CUBIC

#ns default parameters for BI-TCP
Agent/TCP set bs_beta_ 0.875
Agent/TCP set bs_max_increment_ 32
Agent/TCP set bs_min_increment_ 0.01
Agent/TCP set bs_log_factor_ 4
Agent/TCP set bs_fast_convergence_ 1
Agent/TCP set low_window_ 14

IPP Lecture 17 - 43

TCP for LFN’s

BI-TCP is in Linux 2.6 kernel
– S.ysctl’s

net.ipv4.tcp_bic_low_window = 14
net.ipv4.tcp_bic_fast_convergence = 1
net.ipv4.tcp_bic = 1

HS TCP, STCP, and BI-TCP try to improve TCP performance by
recovering faster from packet loss

Recall (lecture 14) SLAC’s results for iperf tests across the Internet
– TCP Reno single stream has low performance and is unstable on long

distances
– FAST TCP is very handicapped by reverse traffic
– STCP is very aggressive on long distances
– Bi-TCP performs very well in almost all cases

We will look at FAST and Vegas shortly
– Delay-based congestion avoidance

Try to improve TCP performance by avoiding loss in the first place!

We will also eventually look at parallel TCP streams to speed recovery

IPP Lecture 17 - 44

Next time …

Improving TCP performance by (automatically) selecting “best”
buffer/window size

– Bandwidth estimation
– Auto-tuning

assignments 7 and 8

