Internet Programming & Protocols
Lecture 17

ns
OPnet

TCP flavors: Scalable TCP, HS TCP, BI-TCP

3 www.cs.utk.edu/~dunigan/ipp/ v

ns _trace-driven simulation

o Text example 4.2, TCP competing with mpeg trace of Star Wars
— ~dunigan/ipp05/ns/chap4-2.tcl
— Variable bit-rate trace of video source is big file (not in my directory)
o (time, packet length)
— Report datarate and drops for TCP Tahoe and video stream
— Generate bandwidth plots of UDP and TCP with record procedure
— Use awk —f e2e.awk out.all | xgraph —m to generate RTT vs time

FTP source TCP sink

10 Mbps 10 Mbps

1ms 1ms

video source video client

ur IPP Lecture 17 - 2

chap4-2.tcl

create UDP source sink

set udp0 [new Agent/UDP]

$ns attach-agent $n2 $udpO
set udpsinkO [new Agent/Null]
$ns attach-agent $n3 $udpsink0
$ns connect $udp0 $udpsink0

ile object

e [new Tracefile]

$tfile filename starwars.nsformat

set trace0 [new Application/Traffic/Trace]
$trace0 attach-tracefile $tfile

$trace0 attach-agent $udp0

ur IPP Lecture 17 - 3

chap4-2.tcl

set mybytes 0O
set ubytes 0

proc record {} {
global ns tcp0 tcpsink0 f2 mybytes fL sink3 ubytes

set delta 0.1

set now [$ns now]

set tombytes [$tcp0 set ndatabytes_]

set bw [expr $tombytes - $mybytes]

puts $f2 "$now [expr $bw/$delta*8/1000000]"
set mybytes $tombytes

set tombytes [$sink3 set bytes_]

set bw [expr $tombytes - $ubytes]

puts $f1 “$now [expr $bw/$delta*8/1000000]"
set ubytes $tombytes

#Re-schedule the procedure
$ns at [expr $now+$delta] “record*

ur IPP Lecture 17 - 4

TCP w Star Use

chap4-2.tcl

e UDP has no IR
congestion control, 0 tes ira 4n 1es 180 2mn
so TCP gets preemds
bandwidth only when R

video stream is not

consuming as much.
e Both streams are

dropping packets

BIT treous

"
W s 4@ ¢ ea 1am 1z 140 lea 158 200 |PP Lecture 175
N

ns loss models
e UDP agents includes, CBR, Pareto, Exponential, and trace-driven

e You can also associate a loss model with a link

— droplist
set droplist { 100 102 104 }
set lossylink_ [$ns link $n0 $n1]
set loss_module [new Erroriodel/List]
$loss_module droplist Sdroplist
$lossylink_ errormodule $loss_module

— Probabilistic p=0.001 drop on the average 1 in 1000 packets
set lossrate 0.001
set lossylink_ [$ns link $n0 $n1] f
set loss_module [new Erroriodel] {
$loss_module set rate_ $lossrate L . |
set u [new Randomvariable/Uniform] | H
set rng [new RNG]
$rng seed 57643
$u use-rng $rng
$loss_module ranvar $u
$lossylink_ errormodule $loss_module

e Use ns random numbers to select start times e
set sec [expr int([$rng uniform 0.1 [expr Sendtime/20]11)]
set frac [expr int([$rng uniform 0 25])]
set starttime $sec.$frac
ur IPP Lecture 17 - 6

More tracing and monitoring in ns

e Trace/Var

— Record new values of ns variable every time

it changes
set tf [open cwnd.tr w]
set tracer [new Trace/Var]
$tracer attach $tf
$tcp trace cwnd_ $tracer

output file
f 13.090184 a_083 ncwnd_ v6.79157
T t3.109195 a_o083 ncwnd_ v6.93882
f t3.118795 a_083 ncwnd_ v7.08293

— record procedure samples good enough
o Event trace (TCP state info)
— Inserted in trace-all file

— $ns eventtrace-all [$file]
E 1.766513 0 3 TCP TIMEOUT 1 54 10
E 1.766513 0 3 TCP SLOW_START 1 54 1
E 2.832301 0 3 TCP NEWRENO_FAST_RETX 1 149 13

E 2.837195 0 3 TCP NEWRENO_FAST_RECOVERY 1 149 6
fid seq# cwnd

src dst event

an uindow

an window

Trasesvar ound

(==Y

e e TR

8.3 1 15 2 B8 3 3.3 4
srvonds
P ———

fmnas manes P S S T S Y
IEEEREEEEEEEERER]
srvonids

IPP Lecture 17 -7

Monitoring queues in ns

e Tracing queue variables at specified interval
set gmon [$ns monitor-queue $n2 $n3 [open gm.out w] 0.1];
[$ns link $n2 $n3] queue-sample-timeout;
e: 1.3 23 1040.0 1.0 5 2 2 4120 1080 2000
time src dst avrgB avrgpkts arrivals depart drops barriv bdepart bdrops

e Monitoring a queue
— Snapshot of queue activity with your record or finish procedure

— Variables pdrops_ pdepartures_ parrivals_ bdrops_ bdepartures_ barrivals_
set gmon [$ns monitor-queue $n0 $n1 1 2]

set curr_gsize [$qmon set size_]
puts “drops [$gmon set pdrops_]

e Monitoring a flow
— If you need to know which flows are experiencing drops
— Need to set flowids S$tcp set fid_ 1
set fm [$ns makeflowmon Fid
$ns attach-fmon [$ns link $r1 $r2] $fm O
foreach f [$fm flows] {
puts " flow [$f set flowid_] drops: [$f set pdrops_]"
3

ur IPP Lecture 17 - 8

ns summary

o ns popular in the network research community

— Free

— Considerable testing of ns TCP implementations (credibility)

— Easy to add new variations

e Add a little C++, adjust the Makefile and defaults.tcl
— Other features: routing, LAN, wireless, multicast

o Awkward to setup topologies
— No drag & drop
— C++ and Tcl pretty ugly

o Not suitable for huge topologies

— Though scripting loops are better than doing 5000 drag & drops

o All simulations are going to be slow for lots of nodes and lots of packets

— Need parallelism ... open research

o Alternatives

— ssfnet — written in java (credibility -- validation of TCP flavors?)

— OPNET

IPP Lecture 17 -9

OPNET

e Industrial strength simulator — good credibility
e Big $'s though “free” for university/researchers
— Technical support vs “ns mailing lists”
e Nice GUI for topology design (drag & drop)
e Presentation of results more intuitive
e More efficient (faster?) than ns, better for larger simulations
e LAN simulations let you drag & drop particular vendor router/switches

e Some TCP customizations supported (C like)

ur IPP Lecture 17 - 10

OPNET GUI

-

T
b LR T G I b P i bk e

kAt vipe Dbadvaat sE T

il

§113) @3 |75 %] 8] &

IPP Lecture 17 - 11

Theory, experiment, simulation

e Liveinternet tests e Simulations
— See results in ultimate environment — Easily reconfigured
— Real TCP stacks/OS, traffic « Complex topology
— Vary time and host/paths « Vary TCP flavor

- Worry about impact? — Repeatable

e Testbeds Detailed feedback/instrumentation

Add delay, loss, cross-traffic,
queues

— Controlled traffic, but real OS

— Usually LAN based, no queuing
— Randomness for confidence
— Repeatable

Investigate “new” networks/protocols
— Not very good for cross-traffic

— cheap
e Emulators — Can be slow
— Same as testbed — Not real TCP

— Plus control delay, loss, data rates,
dup’s, out-of-order

— Easy to reconfigure

e Need tools to probe and measure
ur IPP Lecture 17 - 12

TCP flavors

o Some modifications to TCP were to make it more net friendly
— Slow-start, AIMD, expo. timeouts, delayed ACKs, Nagle
o Some optimizations to make a TCP flow faster
— Fast recovery, fast retransmit, SACK, FACK
e Initial evolution: TCP Tahoe, Reno, NewReno, SACK, FACK
— Use packet loss to detect congestion and probe for bandwidth
— AIMD(1,0.5) to backoff quickly and slowly increase speed
e Slow-start options for high speed
e TCP accelerants for long, fat nets
— HS TCP, Scalable TCP, BI-TCP
o TCP variants to avoid packet loss
— Vegas/FAST
— Use bandwidth and delay estimates to select cwnd/ssthresh
o TCP Westwood

ur IPP Lecture 17 - 13

slow-start

e Motivation: restore ACK clocking

— When: intial start up, after packet loss, after idle period

— Avoid blast of W packets (full window)

— cwnd €1
e RFC’s suggest a TCP stack can choose to start with cwnd = 4

— Speeds startup (2 less RTT’s), get ACK clocking going quicker

— Acceptable blast (ns windowlInitOption_ windowlnit_)
e Open research, TCP quick-start, faster rate startup with router “approval”
e For long, fat nets (high speed, high delay), Floyd suggests slowing slow-start

after some number of RTT’s

— Slow-start could be injecting thousands of packets into net at NIC speed

— We had certain paths that often experienced packet loss in slow-start ®

— NOTE: TCP Vegas also has a slow-start moderator parameter (A)

— NOTE: slow-start can overshoot “available bandwith” by a factor of 2

o Linear phase overshoot by only 1 segment (or k segments if “virtual MSS”)

ur IPP Lecture 17 - 14

Limited slow-start for large congestion windows (Floyd)

e RFC 3742, new variable max_ssthresh (typically 100)
— Normal slow-start at first
— Slow-start increment decreases with growing cwnd
e For each arriving ACK in slow-start:
if (cwnd <= max_ssthresh) cwnd += MSS; /* standard slow-start */
else {

K = int(cwnd/(0.5 * max_ssthresh));
cwnd += int(MSS/K);

Anecdotal evidence of 4
improved slow-start
between ORNL and
NERSC

ur i 2 . [" W wIPP Lecture 17- 15

TCP for long Fat Networks (LFN)
e TCP linear recovery on paths with high bandwidth and long RTT

— Takes cwnd/2 RTT’s and slope of line is MSS/RTT?2/sec bits/sec
— 10 Gig, 100 ms RTT needs window of 83,333 segments
« Recovering from cwnd/2 takes 4,166 seconds — over an hour!

e Some not so TCP-friendly proposals to speed recovery for LFNs
— Floyd's HS TCP (a,b) a function of current cwnd (table lookup)
— Scalable TCP (1%,1/8), increase cwnd by 1% each ACK
— Virtual MSS (k, ¥z), increase cwnd by k/cwnd for each ACK
o Jumbo frame (MTU=9000) is k=6 with added benefits

Easy to experiment with AIMD in ns
$tcp set decrease_num_ 0.875

$tcp set increase_num_ 32

IPP Lecture 17 - 16

Response Function of AIMD(a.b)
MSS./a(2-b)/2b
RTT\p
_MSSAD e

e Recall our inverse sqrt p law:

o TCP: R=po o o
1.0E+05 AIMD
. AIMD(32,1/8):R:@ g 10E+04
RTT p* 32
The throughput of AIMD | ~
is always about 13 times L0E+02
larger than that of TCP
10401 ¢

10E-07 10E-06 10E05 10E-04 10E-03 1OE-02
Packet Loss Probability

w IPP Lecture 17 - 17

Properties of AIMD

1.0E+06
. - Bandwidth —_
o Bandwidth Scalability apdwd Tee
Scalable
- . 1.0E+05 AIMD
The ability to achieve 10Gbps
with a reasonable packet loss
probability

1.0E+04

NOT TCP
Friendly

4

1.0E+03

o TCP-Friendliness

The ability to share bandwidth with
TCP connections on low-speed

Throughput (Mbps)

1.0E+02

networks

1.0E+01 i
1.0E-07 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02
Packet Loss Probability

(5 IPP Lecture 17 - 18

Scalable TCP.

o Aggressive MIMD for high speed nets (Tom Kelley)
— Loss event: cwnd =0.875* cwnd (1/8 instead of %2)
— With each ACK: cwnd = cwnd + 0.01 (when cwnd > 16)

e — agars
PRRTT} Togitaa el

.
¥ Ll - t

Tne(RTD ' Time (RTT)
scalable TCP

traditional TCP AIMD

IPP Lecture 17 - 19

MIMD and scalable TCP

Scalable TCP response curve

e Response curve for TCP: w=c/Np for SCTP: w =k/p
— STCP has a linear response function, scale-invariant
e Use standard TCP if cwnd < 16

A TGP —

Equi-Fairness
line (MIMD) e Scalable TCP uses multiplicative
decrease (1/8) and multiplicative
. increase (0.01) > MIMD
flow 2's P 4
allocation , e Recall from our control system
X, 4 model, MIMD does not converge!
2 i)
X optimum (green line)
flow 1’s allocation x,
ur IPP Lecture 17 - 20
Scalable TCP

e For RTT =200 ms, k=0.01, (note: scale invariant)

recovery time

Rate Standard TCP Scalable TCP

1Mbps 1.7s 2.7s

10Mbps 17s 2.7s

100Mbps 2mins 2.7s

1Gbps 28mins 2.7s

10Gbps 4hrs 43mins 2.7s

e | have modified ns to support scalable TCP (with Reno whatever)

$tcp set windowOption_ 9 sealuble TEF wa TEP Ren (1 arep

samn
$tcp set decrease_num_ 0.875

$tcp set k_parameter_ 0.01

V Ter

awwy -

. windou

L
:: T
g 0 M 1
E
U‘Lﬂ)‘ ULIH Lile) J‘
Loss rale
ur IPP Lecture 17 - 21
High Speed TCP (HS TCP)

o Floyd, '02, RFC 3649 (experimental)
o TCP linear recovery on paths with high bandwidth and long RTT
— Takes cwnd/2 RTT's and slope of line is MSS/RTT?2/sec bits/sec
— 10 Gig, 100 ms RTT needs window of 83,333 segments
— From inverse square root p law, if you want to sustain a data rate of 10 gbs
over a 100 ms RTT path, your loss rate must be less than 10-14
o Floyd proposes a modified response function that requires a more
tractable probability of 10-7 for 83,000 segment window
— Standard TCP sending rate (S) in segments/RTT S = 1.22/(p%5)
— HSTCP S =0.15/(p°%2)
e At low loss probabilities and big windows, you want TCP to scale
e When loss probability is high (10- or larger), you want to be TCP
friendly because net is probably congested

— HS TCP, STCP, and BI-TCP have low window threshold where if
cwnd < low_win then use standard TCP AIMD (1, %2)

— Low window threshold is 38 segments for HS TCP
IPP Lecture 17 - 23

e e
Note: (1) big window with 140
ms RTT, (2) window cutby 1/8, & [|
(3) fast recovery while 1/cwnd e [-
takes forever WL |
Is it friendly, stable, fair? toromoE ks

ur IPP Lecture 17 - 22
HS TCP

HighSpeed TCP: use a modified response function,

100000 T
10000
H
i 10w
@
]
";'. 100
]
10
1
16-10 1e09 1¢-08 1607 108 1605 00001 OO0 OQOQ1 o1
Loss Rate P
ur IPP Lecture 17 - 24

HS TCP implementation

o To get the AIMD(a,b) for HS TCP, need to solve the
exponential equation for current cwnd, w w oW Biw

e Rather than have the kernel solve that equation during 18
packet processing, we use a table lookup based on
current congestion window, w, to get decrease factor
and increase factor.

Wk e

a4 @

e Example, if cwnd is 1058, then reduce by 1/3 and 663
increment is 8 \

e If cwnd is 83,000 segments, then our decrease factor is :or;e i
0.1 (10%), and our increment is 72 segments per RTT 1;;; 10
(0.1%) 11

o More aggressive than standard TCP, but not as
aggressive as Scalable TCP

13

e Experimental implementations in Linux (ORNL) and ns

IPP Lecture 17 - 25

HS TCP in ns

e Inns $tcp set windowOption_ 8

e Example, RTT 140 ms, window of 3500 segments
— From table W=3500 = decrease by 0.26, add 16 segments per RTT

STCF wp METCR us TCR Rame 1 draps

anon
oy F ; @

cargrEtian uindow

ur IPP Lecture 17 - 26

HS TCP and scalable TCP in the wild

e Modified Linux kernel with HS TCP and scalable TCP
e 3 tests between ORNL and CERN with a UDP blast at about 3 seconds

e cwnd (Mbytes) information collected by instrumented kernel (Web100)

3 T T T T
4.5 | jaut -
i
. a4k] Kelly
4
i
T 3.5 -
= Floyd
T 5L
£ a5 g
ok standard |
5
Tyt .
5
S 1k J
6.5 [.
o | i | |
@ 2 4 [3 18 12

seconds

IPP Lecture 17 - 27

Response Functions of HSTCP and STCP

Bandwidth Scalable

1.0E+06

MSS 0.12
HSTCP: R=——F—2r
* RTT po&s 1.0E+05
MSS 0.08
. R=— 1.0E+04
e STCP: RTT p

1.0E+03

Throughput (Mbps)

HSTCP and STCP are
both bandwidth scalable L0Er02
and TCP friendly

10E-07 10E-06 10E-05 10E-04 1.0E-03

Packet Loss Probabilit

TCP Friendly

ur IPP Lecture 17 - 28

BI-TCP (NCSU)

o AIMD mods to recover fast at larger windows (scalable), but be TCP
friendly at small windows
o Adjust for RTT unfairness
o Combines additive increase with binary search increase
— When window is large, additive increase with large increment provides
o Scalability
o Linear RTT fairness

— With small congestion window, binary search increase provides TCP-
friendly response

e Currently in Linux 2.6 kernel, and there are mods for ns

e Many of following slides are from NCSU powerpoint (Rhee & Xu)

IPP Lecture 17 - 29

TCP recovery and RTT fairness

e Loss recovery is sensitive to RTT
— Slow-start doubles cwnd (data rate)

every RTT /\

— Linear recovery increments cwnd by -
one segment (MSS)every RTT
o Nearby host will recover faster than
distant host (droptail queue)
— Example chap. 11 text

— Congestion) _-.m_g.n,.
— Red flow 1349 kbs
— Green 60 kbs

won bl

o

RIII: ‘/I/_

ur T e Lecture 17430

RTT Fairness on High-Speed Networks

e For a protocol with the following response function, where ¢ and
d are protocol-related constants.

rMsSc
RTT

e The RTT Fairness Index (or the throughput ratio of two flows) on high-
speed networks is
RTT, |-
RTT,

e On high speed networks, the RTT fairness of a protocol depends on
the exponent d in the response function

-

Lisong Xu, Khaled Harfoush, and Injong Rhee, "Binary Increase Congestion Control for Fast Long-
Distance Networks", in Proceedings of IEEE INFOCOM 2004, March, 2004, HongKong
IPP Lecture 17 - 31

Slope Determines the RTT Fairness

If the response function is: then the RTT Fairnless is:

MSS ¢ RTT, \i-d
R(p)=——— 2
P RTT p? [RTTJ

1E+06

The figure is shown in log-
log scale, so exponent d in
the response function is
the slope of the line in the
figure

1E+05

1E+04

The slope of the line
determines the RTT
fairness of a protocol on
high-speed networks

1E+03

Packets/RTT

1E+02

LE+01 + »
1£07 1E06 1E05 1E04 1E03 1E02

Packet Loss Probability
IPP Lecture 17 - 32

Simulation Results of RTT Fairness

Throughout ratio of two flows on a 2.5Gbps link

Inverse RTT Ratio of two flows | 1 3 6
AIMD 1 6 22
HSTCP 1 29 107
STCP 1 127 389

Example: for STCP if RTT ratio is 6, short RTT flow 389 times faster!

Simulation setup: BDP Buffer, Drop Tail, Reverse Traffic, Forward
Background Traffic (short-lived TCP, Web Traffic)

ur IPP Lecture 17 - 33

BI-TCP Design Goal

Scalabili

, RTT Fairness

LOE-04
s Probabiiity

TCP Fairness

IPP Lecture 17 - 34

BIC (Binary Increase Congestion control)

e BIC adaptively increase cwnd, and decrease cwnd by 1/8

cwnd = cwnd + 1 cwnd = cwnd * (1-1/2)

cwnd = cwnd + f(cwnd, history) cwnd = cwnd * (1-1/8)

Packet loss ket loss Packet loss TCP|
cwnd
>
[1 : : g
Slow start Congestion avoidance Time (RTT)
w IPP Lecture 17 - 35

A Search Problem

A Search Problem

— consider the increase part of congestion avoidance as a search
problem, in which a connection looks for the available bandwidth by
comparing its current throughput with the available bandwidth, and
adjusting cwnd accordingly.

Q: How to compare R with A?
R = current throughput
=cwnd/RTT
A = available bandwidth
A: Check for packet losses
— No packet loss: R <= A ¥
— Packet losses: R>A

e How does TCP find the available
bandwidth?
— Linear search
while (no packet loss){
cwnd++;

IPP Lecture 17 - 36

BI-TCP: Binary Search with Smax and Smin

e Binary search o Wmax: Max Window
while (Wmin <= Wmax){
inc = (Wmin+Wmax)/2 - cwnd;
if (inc > Smax)

o Wmin: Min Window
o Smax: Max Increment

— Cwnd > Smax do linear with

inc = Smax; Smax/cwnd

else if (inc < Smin) — Binary search would be too
inc = Smin; fast

cwnd = cwnd + inc; - 3

if (no packet losses)
Wmin = cwnd;
else

e Smin: Min Increment
— Turn off bin search

- 0.01
} break; e low_window: 14

— Cwnd smaller than this use
standard TCP AIMD

ur IPP Lecture 17 - 37

Response Functions

Bandwidth scalabilita ERTT Faimess j

TCP-Friendliness

Packets/RTT

1E-07 1E-06 1E-05 1E-04 1E-03 1E-02
Packet Loss Probability

ur IPP Lecture 17 - 39

Binary Search with Smax and Smin

Available Bandwidth

Wmax 256
Smin
224
1927 —&—Linear Search
160 7 —e—Binary Search with Smax and Smin
g
< 128 A
3
96 1 Smax - - - - -
Search is aggressive at first, moderating as it
64 approaches target window size. Smin and
Smax are tunable parameters.
32

Wmin 0 e s T Tt L + + + + + + +—+ +—+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Time (RTT)

ur IPP Lecture 17 - 38

BI-TCP peformance comparison

e RTT fairness, 2 flows 2.5 Gps link
Throughput ratio

Inverse RTT ratio: 1 3 6
BIC 1 12 38

AIMD 1 6 22

HSTCP 1 29 107

STCP 1 127 389

e Feature comparison

BI-TCP AIMD HSTCP STCP

Scalable Y Y Y Y
TCP friendly Y no Y Y
Fair Y Y no no

e Good packet loss performance

Packet loss vs. Buffer Size

Average packet loss Vs Buller size, RTT:200ms

20000 - T T T T —
FAST
Scalable
" Reno
=
15000 - HTCP =
)
3
g 10000 -
T
5
O-" -
- » L .
5000 [" " .
b =
.
0 . . L . . 3 R
0 1000 2000 3000 4000 S000 6000 7000 BOOD
Bulfer size(pkis)
By IPP Lecture 17 - 41

w IPP Lecture 17 - 40
BI-TCP in ns
e NCSU has mods to tcp.cc and tcp.h for BI-TCP for ns
e Inyour tcl

$tcp set windowOption_ 12
BI-TCP ns simulation topology

— Randomized start times

— 20-50% background web traffic
— 25 small TCP flows

— 20% traffic on reverse path

— 50 minutes real time for 3 minutes s

e '05 NCSU proposed CUBIC

ug METCR ug STCE (1 drapt
anon

eamn
sann
#ns default parameters for BI-TCP 1awe
Agent/TCP set bs_beta_ 0.875
Agent/TCP set bs_max_increment_ 32
Agent/TCP set bs_min_increment_ 0.01

1onn

cargertisn window

Agent/TCP set bs_log_factor_ 4 son
Agent/TCP set bs_fast_convergence_ 1 |
Agent/TCP set low_window_ 14 o - ',n . o

ur IPP Lecture 17 - 42

TCP for LFN's

e BI-TCP s in Linux 2.6 kernel

— S.ysctl's
net.ipv4.tcp_bic_low_window = 14
ast_convergence = 1

net.ipva4.tcp_bic = 1

e HS TCP, STCP, and BI-TCP try to improve TCP performance by
recovering faster from packet loss

o Recall (lecture 14) SLAC's results for iperf tests across the Internet

— TCP Reno single stream has low performance and is unstable on long
distances

— FAST TCP is very handicapped by reverse traffic
— STCP is very aggressive on long distances
— BIi-TCP performs very well in almost all cases
o We will look at FAST and Vegas shortly
— Delay-based congestion avoidance
o Try to improve TCP performance by avoiding loss in the first place!
o We will also eventually look at parallel TCP streams to speed recovery

IPP Lecture 17 - 43

Next time ...

e Improving TCP performance by (automatically) selecting “best”
buffer/window size
— Bandwidth estimation
— Auto-tuning

assignments 7 and 8

IPP Lecture 17 - 44

