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ns

Discrete event simulator

Built on Tcl and C++

Simulates following network components
– Links
– Routers
– End-points

Supports wired and wireless networks

Many TCP flavors

UDP 

Provides various tracing facilities

nam, animated graphics
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ns class hierarchy (partial)

Network model in ns is constructed by interconnecting ns objects.  
Objects are built from a hierarchical C++ class structure.  Basic 
methods are handle() to handle events and recv() to process 
packets.
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Constructing a network model

Other simulators (OPNET) have a nice GUI for drag & drop 
construction of nodes/links etc. … not ns  

Network model is constructed with Tcl commands using the following 
ns objects

– Node (host, router)   
set n1 [$ns node]

– Links used to connect nodes (bandwidth, delay, queue discipline)
$ns duplex-link $n1 $r1 8Mb 5ms Droptail

– Agents – transport endpoints, attached to nodes
set udp_agent [new Agent/UDP]
set tcp1 [new Agent/TCP/Newreno]

– Applications – data generators attached to transport agent
Traffic generators for UDP (CBR, Pareto, exponential)
FTP (infinite packet source) or Telnet for TCP

– set ftp [new Application/FTP]

Agents
TCP     (Tahoe)
TCP/Reno
TCP/Newreno
TCP/Sack1
TCP/Vegas
TCPSink
TCPSink/DelAck
TCPSink/Sack1
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ns network model components

Nodes: HostA router1 router2 Hostb
– set hosta [$ns node]
– set router1 [$ns node]

Links:  L1 L2 L3
– $ns duplex-link $hosta $router1 10Mb 30ms DropTail

Transport Agents: TCP  TCPSink
– set tcp [new Agent/TCP/Newreno]
– $ns attach-agent $hosta $tcp
– set sink [new Agent/TCP/Sink/DelAck]
– $ns connect $tcp $sink

Traffic generators:  FTP
– set ftp [new Application/FTP]
– $ftp attach-agent $tcp

Host A
Host Brouter2router1

L1 L2 L3

TCPFTP
TCPSink

attach-agent

connect

duplex-link
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ns nodes and links

ns node is a compound object composed 
of a node entry object and a classifiers.

ns link (simplex or duplex) manages 
queuing, delay, and drops
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ns packet flow internals

Full-duplex link between n0 and n1, TCP agent attached to n0, and 
FTP application attached to TCP agent.  Sink agent attached to n1.  
TCP agent connected to Sink agent.
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Using ns

Problem

Simulation
model

Setup/run 
simulation 

with ns

Result
analysis

Modify
ns
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ns script template

For assignments, layout and document your Tcl as follows (see 
template.txt)

# ns tcl file should have header comments describing purpose and
#  any command line arguments

# intial values and command line arguments

# create ns simulator object and any trace files

# record and finish procedures

# topology: nodes, links  maybe ascii "picture" of topology

# transport agents, application agents and their settings

# schedule of events and run
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ns by example

Examples from tutorial  (.tcl available)

Intro to nam

Examples from text chapter 4

Tracing and monitoring and graphing

Error loss models

Sample tcl’s in ~dunigan/ipp05/ns/

see README, you need to add things   
to your PATH and ENV
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example1b.tcl

Two nodes,1 link
– set n0 [$ns node] 
– set n1 [$ns node] 
– $ns duplex-link $n0 $n1 1Mb 10ms DropTail

Delay is one-way (so RTT is 20 ms in this case)
Create a UDP agent and attach it to node

– n0 set udp0 [new Agent/UDP] 
– $ns attach-agent $n0 $udp0 

Create a CBR traffic source and attach it to udp0
– set cbr0 [new Application/Traffic/CBR] 
– $cbr0 set packetSize_ 500 
– $cbr0 set interval_ 0.005 
– $cbr0 attach-agent $udp0 

create a Null agent which acts as traffic sink and attach it to node n1
– set null0 [new Agent/Null] 
– $ns attach-agent $n1 $null0 

Connect the two agents to each other. 
– $ns connect $udp0 $null0 

n1n0

n1n0

udp nullcbr
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example1b.tcl

Wrap this topology with boilerplate stuff

Set up initial values if any, create simulator object, and open trace files
set ns [new Simulator]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

Set up a finish procedure 
proc finish {} {

global ns nf
$ns flush-trace

#Close the trace file
close $nf

#Execute nam on the trace file
exec nam out.nam &
exit 0

}

At the end schedule events, and start ‘er up  (ns example1b.tcl)
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish“
$ns run
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example1b.tcl
#Create a simulator object
set ns [new Simulator]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Define a 'finish' procedure
proc finish {} {

global ns nf
$ns flush-trace

#Close the trace file
close $nf

#Execute nam on the trace file
exec nam out.nam &
exit 0

}
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]

#Create a duplex link 
$ns duplex-link $n0 $n1 1Mb 10ms 

DropTail

#Create a UDP agent and attach it to 
node n0

set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

# Create a CBR traffic source and 
attach it to udp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink) 
and attach it to node n1

set null0 [new Agent/Null]
$ns attach-agent $n1 $null0

#Connect the traffic source with the 
traffic sink

$ns connect $udp0 $null0

#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 

seconds of simulation time
$ns at 5.0 "finish“
$ns run IPP Lecture 16 - 14

Running ns and nam

ns example1b.tcl
– Runs simulation
– Creates a nam tracefile (out.nam)
– Runs nam (nam out.nam)   (  Example: nam ex1b.nam)

nam Network Animator
– Mainly eye-candy, sometimes it gives some insight
– Tcl/TK animation tool for packet animation
– Embed Tcl commands in your ns script to control animation  
– Ns produces a nam trace file
– Use nam to view the animation
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Tcl for managing nam

The nam control commands have nothing to do with the simulation 
problem, but they are embedded in your .tcl (messy)

Visualize trace in nam
– Can collect trace on whole simulation or just one path
$ns namtrace-all [open test.nam w] 
$ns namtrace-queue $n0 $n1

Annotation
– Add textual explanation to your simulation (appears in lower box)
$ns at 3.5 "$ns trace$ns at 3.5 "$ns trace--annotate annotate \\““packet droppacket drop\\""““

Variable tracing in nam
Agent/TCP set nam_tracevar_ true

$tcp tracevar srtt_

$tcp tracevar cwnd_

– The changing value of these will appear in the lower nam window,                  
(Example: nam var.nam)

IPP Lecture 16 - 17

ns nam Interface

Color

Node manipulation

Link manipulation

Topology layout

Protocol state

Misc
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nam Interface: Color

Color mapping
$ns color 40 red$ns color 40 red

$ns color 41 blue$ns color 41 blue

$ns color 42 chocolate$ns color 42 chocolate

Color ↔ flow id association
$tcp0 set fid_ 40$tcp0 set fid_ 40 ;# red packets;# red packets

$tcp1 set fid_ 41$tcp1 set fid_ 41 ;# blue packets;# blue packets

$udp0 set fid_ 42$udp0 set fid_ 42 ;# chocolate packets;# chocolate packets
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nam Interface: Nodes

Color
$node color red$node color red

Shape (can’t be changed after sim starts)
$node shape box$node shape box ;# circle, box, hexagon;# circle, box, hexagon

Marks (concentric “shapes”)
$ns at 1.0 $ns at 1.0 ““$n0 add$n0 add--mark m0 blue boxmark m0 blue box””
$ns at 2.0 $ns at 2.0 ““$n0 delete$n0 delete--mark m0mark m0””

Label (single string)
$ns at 1.1 $ns at 1.1 ““$n0 label $n0 label \\””web cache 0web cache 0\\””””
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nam Interfaces: Links

Color
$ns duplex$ns duplex--linklink--op $n0 $n1 color "green"op $n0 $n1 color "green"

Label
$ns duplex$ns duplex--linklink--op $n0 $n1 label "op $n0 $n1 label "abcedabced""

Dynamics (automatically handled)
$ns $ns rtmodelrtmodel Deterministic {2.0 0.9 0.1} $n0 $n1Deterministic {2.0 0.9 0.1} $n0 $n1

Asymmetric links not allowed
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nam Interface: Topo Layout

“Manual” layout: specify everything

$ns duplex$ns duplex--linklink--op $n(0) $n(1) orient rightop $n(0) $n(1) orient right

$ns duplex$ns duplex--linklink--op $n(1) $n(2) orient rightop $n(1) $n(2) orient right

$ns duplex$ns duplex--linklink--op $n(2) $n(3) orient rightop $n(2) $n(3) orient right

$ns duplex$ns duplex--linklink--op $n(3) $n(4) orient 60degop $n(3) $n(4) orient 60deg

If anything missing automatic layout
– Use the Edit button on nam to re-arrange
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nam Interface: Misc

Monitor a queue
– $ns duplex-link-op $n2 $n3 queuePos 0.5 

Set animation rate
$ns at 0.0 "$ns set$ns at 0.0 "$ns set--animationanimation--rate 0.1msrate 0.1ms““

You won’t be using nam that much, unless you just want to, but you need to 
recognize (disregard) these commands in ns scripts that you might encounter.
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example2.tcl

3 nodes, 2 UDP/CBR sources (n0 n1) to 2 sinks at n3
set n0 [$ns node] 
set n1 [$ns node] 
set n2 [$ns node] 
set n3 [$ns node] 
$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail
$ns duplex-link $n2 $n3 1Mb 10ms DropTail
#Create a UDP agent and attach it to node n0 
set udp0 [new Agent/UDP] 
$ns attach-agent $n0 $udp0 
# Create a CBR traffic source and attach it to udp0 
set cbr0 [new Application/Traffic/CBR] 
$cbr0 set packetSize_ 500 
$cbr0 set interval_ 0.005 
$cbr0 attach-agent $udp0 
#Create a UDP agent and attach it to node n1 
set udp1 [new Agent/UDP] 
$ns attach-agent $n1 $udp1
# Create a CBR traffic source and attach it to udp1 
…ditto for cbr1
$ns connect $udp0 $null0 
$ns connect $udp1 $null0

example  nam ex2.nam
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ns by example  ns-simple.tcl
TCP competing with UDP

Four nodes, 3 links

TCP agent (Tahoe) and TCPSink
set tcp [new Agent/TCP]
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink
$ns connect $tcp $sink
set ftp [new Application/FTP]
$ftp attach-agent $tcp

UDP agent with CBR

Limit n2-n3 queue size to 10
– $ns queue-limit $n2 $n3 10

generate nam trace    simple.nam

Assignment 7

http://nile.wpi.edu/NS/
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Example chap. 4.1      chap4-1.tcl
TCP with varying window size

metric: TCP throughput 
– goodput – unique data arriving at destination
– Reported by finish procedure along with count of retransmitted packets

generate a packet trace
– $ns trace-all [open out.all w]

record procedure to write current time and data rate to a trace file

4 nodes
#   object      from  to  bandwith delay    queue
$ns duplex-link $n0   $R1 10Mb        1ms    DropTail
$ns duplex-link $R1   $R2  1Mb        3ms    DropTail
$ns duplex-link $R2   $n1 10Mb        1ms    DropTail

n0 n1R0 R1 10 Mbs

1 ms

10 Mbs

1 ms

1 Mbs

3 ms

FTP source sink
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TCP agents and public variables

Agents
– Sender: TCP TCP/Reno TCP/NewReno TCP/Sack1 TCP/Fack

Plus TCP/WestwoodNR and other trickier variations (later)
– Receiver: TCPSink TCPSink/DelAck TCPSink/Sack1 TCPSink/Sack1/DelAck
– Note Agent/TCP/FullTcp is bidirectional, different semantics (not covered)

Variables for controlling TCP operation
– Defaults in ns-2.28/tcl/lib/ns-default.tcl
– packetSize_   window_   tcpTick_  numdupacks_  decrease_num_
– Set for all TCP flows in your tcl Agent/TCP tcpTick_ 0.5
– Set for paritcular flow $tcp0 set window_ 20

Variables for tracing TCP behavior 
– sender side: ndatabytes_  ndatapack_   nrexmitpack_  cwnd_  ssthresh_ 

dupacks_  srtt_   (AIMD: increase_num_  decrease_num_ )
– sink side:   bytes_

(later)  monitor-queue:  pdrops_    size_

ns-2.28/tcl/lib/ns-default.tcl
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finish

Report final values of metrics of interest

Schedule to run at end of simulation

$ns at 10.0 "finish"

proc finish {} {
global ns tcp0 tcpsink0 f2 window

set now [$ns now]
set bw [$tcpsink0 set bytes_]
puts "window $window pkts bw [expr $bw/$now*8/1000] Kbs rexmit

packets: [$tcp0 set nrexmitpack_]"
$ns flush-trace
close $f2

#  do other things like awk trace file, start nam etc.
exit 0

}
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record
Your own monitoring procedure

– Write variables of interest at this instant to files
– Re-schedule record procedure for next delta 

Open any files you’ll need in the initialization  and schedule record
set f2 [open thruput.dat w]
$ns at 0.0 "record“

set mybytes 0;  # global for holding value across record calls

proc record {} {
global ns tcp0 tcpsink0 f2 mybytes

set delta 0.1
set now [$ns now]
set tombytes [$tcp0 set ndatabytes_ ]
set bw [expr $tombytes - $mybytes]
puts $f2 "$now [expr $bw/$delta*8/1000000]"
set mybytes $tombytes

#Re-schedule the procedure
$ns at [expr $now+$delta] "record"

}

Don’t 
forget
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Trace file

Trace packets on all links
$ns trace-all [open test.out w]

For every packet, record for entry and exit of each node on the path
– This file can get really big (you’re seeing the event scheduler in action)
– Restrict to a particular link:    $ns trace-queue $n0 $n1
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Life of packet and its ACK
Can see how much time packet spends at each node 

– Link delay, queue delay etc.
– Can track RTT with seq # 
– Need flow id for complicated flows    $tcp0 set fid_1;  $tcp1 set fid_ 2 

+ 9.877424 0 1 tcp 1040 ------- 0 0.0 3.0 1189 2374

- 9.877424 0 1 tcp 1040 ------- 0 0.0 3.0 1189 2374
r 9.879256 0 1 tcp 1040 ------- 0 0.0 3.0 1189 2374
+ 9.879256 1 2 tcp 1040 ------- 0 0.0 3.0 1189 2374
- 9.900488 1 2 tcp 1040 ------- 0 0.0 3.0 1189 2374
r 9.911808 1 2 tcp 1040 ------- 0 0.0 3.0 1189 2374
+ 9.911808 2 3 tcp 1040 ------- 0 0.0 3.0 1189 2374
- 9.911808 2 3 tcp 1040 ------- 0 0.0 3.0 1189 2374
r 9.91364 2 3 tcp 1040 ------- 0 0.0 3.0 1189 2374
+ 9.91364 3 2 ack 40 ------- 0 3.0 0.0 1189 2383
- 9.91364 3 2 ack 40 ------- 0 3.0 0.0 1189 2383
r 9.914672 3 2 ack 40 ------- 0 3.0 0.0 1189 2383
+ 9.914672 2 1 ack 40 ------- 0 3.0 0.0 1189 2383
- 9.914672 2 1 ack 40 ------- 0 3.0 0.0 1189 2383
r 9.917992 2 1 ack 40 ------- 0 3.0 0.0 1189 2383
+ 9.917992 1 0 ack 40 ------- 0 3.0 0.0 1189 2383
- 9.917992 1 0 ack 40 ------- 0 3.0 0.0 1189 2383
r 9.919024 1 0 ack 40 ------- 0 3.0 0.0 1189 2383
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awk’s for trace file  ack seq drop

Parse out.all, ?check node # maybe fid
exec awk {

{
if (($1 == "r") && ($5 == "ack") &&\

($3 == "1") && ($4 == "0"))\
print $2, $11

}
} out.all > out.ack

exec awk {
{

if (($1 == "+") && ($5 == "tcp") &&\
($3 == "0") && ($4 == "1"))\

print $2, $11
}

} out.all > out.seq

exec awk {
{

if (($1 == "d") && ($5 == "tcp") &&\
($3 == "0") && ($4 == "1"))\

print $2, $11
}

} out.all > out.drop
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graphing

Graphs more useful than nam,   e.g., plot
– bandwidth vs time
– cwnd vs time
– ssthresh vs time

Plot with xgraph (in your “ns” path)
– xgraph –m  file1.dat  file2.dat
– xgraph –m –nl out.ack out.seq out.drop

Plot with gnuplot (create .png) see  ~dunigan/ipp05/ns/sample.plot
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ns

With ns you can set up a multitude of experiments
– Vary topology

Number of nodes, delay (RTT), bandwdith, queue sizes
– Vary TCP’s

Different flavors:  Tahoe Reno Newreno Sack Fack …
Vary window size, dup threshold, tick resolution

– Mix in different competing traffic
Other TCP flows
UDP CBR/exponential/Pareto

– Trace/monitor variables
Plot cwnd, ssthresh, datarate, RTT
Plot sequence number, ACK, drops

How well does the simulation match the real world?
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Next time …

ns error models

More TCP flavors


