
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 16

ns

nam

IPP Lecture 16 - 2

ns

Discrete event simulator

Built on Tcl and C++

Simulates following network components
– Links
– Routers
– End-points

Supports wired and wireless networks

Many TCP flavors

UDP

Provides various tracing facilities

nam, animated graphics

IPP Lecture 16 - 3

ns class hierarchy (partial)

Network model in ns is constructed by interconnecting ns objects.
Objects are built from a hierarchical C++ class structure. Basic
methods are handle() to handle events and recv() to process
packets.

IPP Lecture 16 - 4

Constructing a network model

Other simulators (OPNET) have a nice GUI for drag & drop
construction of nodes/links etc. … not ns

Network model is constructed with Tcl commands using the following
ns objects

– Node (host, router)
set n1 [$ns node]

– Links used to connect nodes (bandwidth, delay, queue discipline)
$ns duplex-link $n1 $r1 8Mb 5ms Droptail

– Agents – transport endpoints, attached to nodes
set udp_agent [new Agent/UDP]
set tcp1 [new Agent/TCP/Newreno]

– Applications – data generators attached to transport agent
Traffic generators for UDP (CBR, Pareto, exponential)
FTP (infinite packet source) or Telnet for TCP

– set ftp [new Application/FTP]

Agents
TCP (Tahoe)
TCP/Reno
TCP/Newreno
TCP/Sack1
TCP/Vegas
TCPSink
TCPSink/DelAck
TCPSink/Sack1

IPP Lecture 16 - 5

ns network model components

Nodes: HostA router1 router2 Hostb
– set hosta [$ns node]
– set router1 [$ns node]

Links: L1 L2 L3
– $ns duplex-link $hosta $router1 10Mb 30ms DropTail

Transport Agents: TCP TCPSink
– set tcp [new Agent/TCP/Newreno]
– $ns attach-agent $hosta $tcp
– set sink [new Agent/TCP/Sink/DelAck]
– $ns connect $tcp $sink

Traffic generators: FTP
– set ftp [new Application/FTP]
– $ftp attach-agent $tcp

Host A
Host Brouter2router1

L1 L2 L3

TCPFTP
TCPSink

attach-agent

connect

duplex-link

IPP Lecture 16 - 6

ns nodes and links

ns node is a compound object composed
of a node entry object and a classifiers.

ns link (simplex or duplex) manages
queuing, delay, and drops

IPP Lecture 16 - 7

ns packet flow internals

Full-duplex link between n0 and n1, TCP agent attached to n0, and
FTP application attached to TCP agent. Sink agent attached to n1.
TCP agent connected to Sink agent.

IPP Lecture 16 - 8

Using ns

Problem

Simulation
model

Setup/run
simulation

with ns

Result
analysis

Modify
ns

IPP Lecture 16 - 9

ns script template

For assignments, layout and document your Tcl as follows (see
template.txt)

ns tcl file should have header comments describing purpose and
any command line arguments

intial values and command line arguments

create ns simulator object and any trace files

record and finish procedures

topology: nodes, links maybe ascii "picture" of topology

transport agents, application agents and their settings

schedule of events and run

IPP Lecture 16 - 10

ns by example

Examples from tutorial (.tcl available)

Intro to nam

Examples from text chapter 4

Tracing and monitoring and graphing

Error loss models

Sample tcl’s in ~dunigan/ipp05/ns/

see README, you need to add things
to your PATH and ENV

IPP Lecture 16 - 11

example1b.tcl

Two nodes,1 link
– set n0 [$ns node]
– set n1 [$ns node]
– $ns duplex-link $n0 $n1 1Mb 10ms DropTail

Delay is one-way (so RTT is 20 ms in this case)
Create a UDP agent and attach it to node

– n0 set udp0 [new Agent/UDP]
– $ns attach-agent $n0 $udp0

Create a CBR traffic source and attach it to udp0
– set cbr0 [new Application/Traffic/CBR]
– $cbr0 set packetSize_ 500
– $cbr0 set interval_ 0.005
– $cbr0 attach-agent $udp0

create a Null agent which acts as traffic sink and attach it to node n1
– set null0 [new Agent/Null]
– $ns attach-agent $n1 $null0

Connect the two agents to each other.
– $ns connect $udp0 $null0

n1n0

n1n0

udp nullcbr

IPP Lecture 16 - 12

example1b.tcl

Wrap this topology with boilerplate stuff

Set up initial values if any, create simulator object, and open trace files
set ns [new Simulator]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

Set up a finish procedure
proc finish {} {

global ns nf
$ns flush-trace

#Close the trace file
close $nf

#Execute nam on the trace file
exec nam out.nam &
exit 0

}

At the end schedule events, and start ‘er up (ns example1b.tcl)
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5 seconds of simulation time
$ns at 5.0 "finish“
$ns run

IPP Lecture 16 - 13

example1b.tcl
#Create a simulator object
set ns [new Simulator]

#Open the nam trace file
set nf [open out.nam w]
$ns namtrace-all $nf

#Define a 'finish' procedure
proc finish {} {

global ns nf
$ns flush-trace

#Close the trace file
close $nf

#Execute nam on the trace file
exec nam out.nam &
exit 0

}
#Create two nodes
set n0 [$ns node]
set n1 [$ns node]

#Create a duplex link
$ns duplex-link $n0 $n1 1Mb 10ms

DropTail

#Create a UDP agent and attach it to
node n0

set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0

Create a CBR traffic source and
attach it to udp0

set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0

#Create a Null agent (a traffic sink)
and attach it to node n1

set null0 [new Agent/Null]
$ns attach-agent $n1 $null0

#Connect the traffic source with the
traffic sink

$ns connect $udp0 $null0

#Schedule events for the CBR agent
$ns at 0.5 "$cbr0 start"
$ns at 4.5 "$cbr0 stop"
#Call the finish procedure after 5

seconds of simulation time
$ns at 5.0 "finish“
$ns run IPP Lecture 16 - 14

Running ns and nam

ns example1b.tcl
– Runs simulation
– Creates a nam tracefile (out.nam)
– Runs nam (nam out.nam) (Example: nam ex1b.nam)

nam Network Animator
– Mainly eye-candy, sometimes it gives some insight
– Tcl/TK animation tool for packet animation
– Embed Tcl commands in your ns script to control animation
– Ns produces a nam trace file
– Use nam to view the animation

IPP Lecture 16 - 15 IPP Lecture 16 - 16

Tcl for managing nam

The nam control commands have nothing to do with the simulation
problem, but they are embedded in your .tcl (messy)

Visualize trace in nam
– Can collect trace on whole simulation or just one path
$ns namtrace-all [open test.nam w]
$ns namtrace-queue $n0 $n1

Annotation
– Add textual explanation to your simulation (appears in lower box)
$ns at 3.5 "$ns trace$ns at 3.5 "$ns trace--annotate annotate \\““packet droppacket drop\\""““

Variable tracing in nam
Agent/TCP set nam_tracevar_ true

$tcp tracevar srtt_

$tcp tracevar cwnd_

– The changing value of these will appear in the lower nam window,
(Example: nam var.nam)

IPP Lecture 16 - 17

ns nam Interface

Color

Node manipulation

Link manipulation

Topology layout

Protocol state

Misc

IPP Lecture 16 - 18

nam Interface: Color

Color mapping
$ns color 40 red$ns color 40 red

$ns color 41 blue$ns color 41 blue

$ns color 42 chocolate$ns color 42 chocolate

Color ↔ flow id association
$tcp0 set fid_ 40$tcp0 set fid_ 40 ;# red packets;# red packets

$tcp1 set fid_ 41$tcp1 set fid_ 41 ;# blue packets;# blue packets

$udp0 set fid_ 42$udp0 set fid_ 42 ;# chocolate packets;# chocolate packets

IPP Lecture 16 - 19

nam Interface: Nodes

Color
$node color red$node color red

Shape (can’t be changed after sim starts)
$node shape box$node shape box ;# circle, box, hexagon;# circle, box, hexagon

Marks (concentric “shapes”)
$ns at 1.0 $ns at 1.0 ““$n0 add$n0 add--mark m0 blue boxmark m0 blue box””
$ns at 2.0 $ns at 2.0 ““$n0 delete$n0 delete--mark m0mark m0””

Label (single string)
$ns at 1.1 $ns at 1.1 ““$n0 label $n0 label \\””web cache 0web cache 0\\””””

IPP Lecture 16 - 20

nam Interfaces: Links

Color
$ns duplex$ns duplex--linklink--op $n0 $n1 color "green"op $n0 $n1 color "green"

Label
$ns duplex$ns duplex--linklink--op $n0 $n1 label "op $n0 $n1 label "abcedabced""

Dynamics (automatically handled)
$ns $ns rtmodelrtmodel Deterministic {2.0 0.9 0.1} $n0 $n1Deterministic {2.0 0.9 0.1} $n0 $n1

Asymmetric links not allowed

IPP Lecture 16 - 21

nam Interface: Topo Layout

“Manual” layout: specify everything

$ns duplex$ns duplex--linklink--op $n(0) $n(1) orient rightop $n(0) $n(1) orient right

$ns duplex$ns duplex--linklink--op $n(1) $n(2) orient rightop $n(1) $n(2) orient right

$ns duplex$ns duplex--linklink--op $n(2) $n(3) orient rightop $n(2) $n(3) orient right

$ns duplex$ns duplex--linklink--op $n(3) $n(4) orient 60degop $n(3) $n(4) orient 60deg

If anything missing automatic layout
– Use the Edit button on nam to re-arrange

IPP Lecture 16 - 22

nam Interface: Misc

Monitor a queue
– $ns duplex-link-op $n2 $n3 queuePos 0.5

Set animation rate
$ns at 0.0 "$ns set$ns at 0.0 "$ns set--animationanimation--rate 0.1msrate 0.1ms““

You won’t be using nam that much, unless you just want to, but you need to
recognize (disregard) these commands in ns scripts that you might encounter.

IPP Lecture 16 - 23 IPP Lecture 16 - 24

example2.tcl

3 nodes, 2 UDP/CBR sources (n0 n1) to 2 sinks at n3
set n0 [$ns node]
set n1 [$ns node]
set n2 [$ns node]
set n3 [$ns node]
$ns duplex-link $n0 $n2 1Mb 10ms DropTail
$ns duplex-link $n1 $n2 1Mb 10ms DropTail
$ns duplex-link $n2 $n3 1Mb 10ms DropTail
#Create a UDP agent and attach it to node n0
set udp0 [new Agent/UDP]
$ns attach-agent $n0 $udp0
Create a CBR traffic source and attach it to udp0
set cbr0 [new Application/Traffic/CBR]
$cbr0 set packetSize_ 500
$cbr0 set interval_ 0.005
$cbr0 attach-agent $udp0
#Create a UDP agent and attach it to node n1
set udp1 [new Agent/UDP]
$ns attach-agent $n1 $udp1
Create a CBR traffic source and attach it to udp1
…ditto for cbr1
$ns connect $udp0 $null0
$ns connect $udp1 $null0

example nam ex2.nam

IPP Lecture 16 - 25

ns by example ns-simple.tcl
TCP competing with UDP

Four nodes, 3 links

TCP agent (Tahoe) and TCPSink
set tcp [new Agent/TCP]
$ns attach-agent $n0 $tcp
set sink [new Agent/TCPSink]
$ns attach-agent $n3 $sink
$ns connect $tcp $sink
set ftp [new Application/FTP]
$ftp attach-agent $tcp

UDP agent with CBR

Limit n2-n3 queue size to 10
– $ns queue-limit $n2 $n3 10

generate nam trace simple.nam

Assignment 7

http://nile.wpi.edu/NS/

IPP Lecture 16 - 26

Example chap. 4.1 chap4-1.tcl
TCP with varying window size

metric: TCP throughput
– goodput – unique data arriving at destination
– Reported by finish procedure along with count of retransmitted packets

generate a packet trace
– $ns trace-all [open out.all w]

record procedure to write current time and data rate to a trace file

4 nodes
object from to bandwith delay queue
$ns duplex-link $n0 $R1 10Mb 1ms DropTail
$ns duplex-link $R1 $R2 1Mb 3ms DropTail
$ns duplex-link $R2 $n1 10Mb 1ms DropTail

n0 n1R0 R1 10 Mbs

1 ms

10 Mbs

1 ms

1 Mbs

3 ms

FTP source sink

IPP Lecture 16 - 27

TCP agents and public variables

Agents
– Sender: TCP TCP/Reno TCP/NewReno TCP/Sack1 TCP/Fack

Plus TCP/WestwoodNR and other trickier variations (later)
– Receiver: TCPSink TCPSink/DelAck TCPSink/Sack1 TCPSink/Sack1/DelAck
– Note Agent/TCP/FullTcp is bidirectional, different semantics (not covered)

Variables for controlling TCP operation
– Defaults in ns-2.28/tcl/lib/ns-default.tcl
– packetSize_ window_ tcpTick_ numdupacks_ decrease_num_
– Set for all TCP flows in your tcl Agent/TCP tcpTick_ 0.5
– Set for paritcular flow $tcp0 set window_ 20

Variables for tracing TCP behavior
– sender side: ndatabytes_ ndatapack_ nrexmitpack_ cwnd_ ssthresh_

dupacks_ srtt_ (AIMD: increase_num_ decrease_num_)
– sink side: bytes_

(later) monitor-queue: pdrops_ size_

ns-2.28/tcl/lib/ns-default.tcl

IPP Lecture 16 - 28

finish

Report final values of metrics of interest

Schedule to run at end of simulation

$ns at 10.0 "finish"

proc finish {} {
global ns tcp0 tcpsink0 f2 window

set now [$ns now]
set bw [$tcpsink0 set bytes_]
puts "window $window pkts bw [expr $bw/$now*8/1000] Kbs rexmit

packets: [$tcp0 set nrexmitpack_]"
$ns flush-trace
close $f2

do other things like awk trace file, start nam etc.
exit 0

}

IPP Lecture 16 - 29

record
Your own monitoring procedure

– Write variables of interest at this instant to files
– Re-schedule record procedure for next delta

Open any files you’ll need in the initialization and schedule record
set f2 [open thruput.dat w]
$ns at 0.0 "record“

set mybytes 0; # global for holding value across record calls

proc record {} {
global ns tcp0 tcpsink0 f2 mybytes

set delta 0.1
set now [$ns now]
set tombytes [$tcp0 set ndatabytes_]
set bw [expr $tombytes - $mybytes]
puts $f2 "$now [expr $bw/$delta*8/1000000]"
set mybytes $tombytes

#Re-schedule the procedure
$ns at [expr $now+$delta] "record"

}

Don’t
forget

IPP Lecture 16 - 30

Trace file

Trace packets on all links
$ns trace-all [open test.out w]

For every packet, record for entry and exit of each node on the path
– This file can get really big (you’re seeing the event scheduler in action)
– Restrict to a particular link: $ns trace-queue $n0 $n1

IPP Lecture 16 - 31

Life of packet and its ACK
Can see how much time packet spends at each node

– Link delay, queue delay etc.
– Can track RTT with seq #
– Need flow id for complicated flows $tcp0 set fid_1; $tcp1 set fid_ 2

+ 9.877424 0 1 tcp 1040 ------- 0 0.0 3.0 1189 2374

- 9.877424 0 1 tcp 1040 ------- 0 0.0 3.0 1189 2374
r 9.879256 0 1 tcp 1040 ------- 0 0.0 3.0 1189 2374
+ 9.879256 1 2 tcp 1040 ------- 0 0.0 3.0 1189 2374
- 9.900488 1 2 tcp 1040 ------- 0 0.0 3.0 1189 2374
r 9.911808 1 2 tcp 1040 ------- 0 0.0 3.0 1189 2374
+ 9.911808 2 3 tcp 1040 ------- 0 0.0 3.0 1189 2374
- 9.911808 2 3 tcp 1040 ------- 0 0.0 3.0 1189 2374
r 9.91364 2 3 tcp 1040 ------- 0 0.0 3.0 1189 2374
+ 9.91364 3 2 ack 40 ------- 0 3.0 0.0 1189 2383
- 9.91364 3 2 ack 40 ------- 0 3.0 0.0 1189 2383
r 9.914672 3 2 ack 40 ------- 0 3.0 0.0 1189 2383
+ 9.914672 2 1 ack 40 ------- 0 3.0 0.0 1189 2383
- 9.914672 2 1 ack 40 ------- 0 3.0 0.0 1189 2383
r 9.917992 2 1 ack 40 ------- 0 3.0 0.0 1189 2383
+ 9.917992 1 0 ack 40 ------- 0 3.0 0.0 1189 2383
- 9.917992 1 0 ack 40 ------- 0 3.0 0.0 1189 2383
r 9.919024 1 0 ack 40 ------- 0 3.0 0.0 1189 2383

IPP Lecture 16 - 32

awk’s for trace file ack seq drop

Parse out.all, ?check node # maybe fid
exec awk {

{
if (($1 == "r") && ($5 == "ack") &&\

($3 == "1") && ($4 == "0"))\
print $2, $11

}
} out.all > out.ack

exec awk {
{

if (($1 == "+") && ($5 == "tcp") &&\
($3 == "0") && ($4 == "1"))\

print $2, $11
}

} out.all > out.seq

exec awk {
{

if (($1 == "d") && ($5 == "tcp") &&\
($3 == "0") && ($4 == "1"))\

print $2, $11
}

} out.all > out.drop

IPP Lecture 16 - 33

graphing

Graphs more useful than nam, e.g., plot
– bandwidth vs time
– cwnd vs time
– ssthresh vs time

Plot with xgraph (in your “ns” path)
– xgraph –m file1.dat file2.dat
– xgraph –m –nl out.ack out.seq out.drop

Plot with gnuplot (create .png) see ~dunigan/ipp05/ns/sample.plot

IPP Lecture 16 - 34

ns

With ns you can set up a multitude of experiments
– Vary topology

Number of nodes, delay (RTT), bandwdith, queue sizes
– Vary TCP’s

Different flavors: Tahoe Reno Newreno Sack Fack …
Vary window size, dup threshold, tick resolution

– Mix in different competing traffic
Other TCP flows
UDP CBR/exponential/Pareto

– Trace/monitor variables
Plot cwnd, ssthresh, datarate, RTT
Plot sequence number, ACK, drops

How well does the simulation match the real world?

IPP Lecture 16 - 35

Next time …

ns error models

More TCP flavors

