
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 15

Emulation

Simulation

IPP Lecture 15 - 2

Evaluating the performance of TCP

z Experimental
– Standalone testbeds
– Emulator testbeds
– Live tests on the Internet
– Active tools (iperf, ping, traceroute) / passive tools (tcpdump/netflows)
– Collect flow packet trace, full traffic traces
– Instrumented kernels (Web100)

z Theoretical
– Analytical models to characterize a TCP flow
– Stochastic/statistical models to characterize flow interactions (background)
– Queuing models to characterize router behavior
– Linear feedback (control) systems to characterize optimal solutions

z Simulation
– Repeatable, flexible, instrumented

IPP Lecture 15 - 3

Real tests or simulations

z Live internet tests
– See results in ultimate environment

– Real TCP stacks/OS, traffic

– Vary time and host/paths

– Worry about impact?

z Test beds
– Controlled traffic, but real OS

– Usually LAN based, no queuing

– Repeatable

– Not very good for cross-traffic

z Emulators
– Same as testbed

– Plus control delay, loss, data rates,
dup’s, out-of-order

– Easy to reconfigure

z Need tools to probe and measure

z Simulations
– Easily reconfigured

z Complex topology

z Vary TCP flavor

– Repeatable

– Detailed feedback/instrumentation

– Add delay, loss, cross-traffic,
queues

– Randomness for confidence

– Investigate “new” networks/protocols

– cheap

– Can be slow

– Not real TCP

IPP Lecture 15 - 4

Network emulation
z Real OS network stack and application testing in a controlled testbed

– Can use all your network tools, ping, iperf, tcpdump, ssh, nfs ….

z Use a “modified” UNIX box as a router (2 NICs) that can introduce
– Packet loss
– Packet delay (select your RTT)
– Packet reordering
– Bandwidth limits (select bandwidth)
– Different queuing disciplines
– Src.port dst.port filters

z Freeware implementations
– NISTNet, netem (linux)
– dummynet (freebsd)

z Use to evaluate
– Your network application protocol
– Your cool mods to the kernel’s TCP stack
– OS’s TCP behavior

emulator

IPP Lecture 15 - 5

NISTNet

z Linux kernel module plus configuration utility

z Network in a box

z Emulates packet loss (random and congestion-dependent), reordering,
bandwidth limits, delay (fixed and variable), duplicates, queues

IPP Lecture 15 - 6

NISTNet implementation

z Kernel module intercepts all IP packets

z Introduces delay/loss etc. based on source/dest filters

z Module has packet queues, timer, filter tables
– Uses MC146818 realtime clock (RTC) for timer interrupts (122 us)

z Configuration utility (application) configures module filters

IPP Lecture 15 - 7

NISTNet configuration

z Command (script) based or GUI

z Command line options (cnistnet)
-a src[:port[.protocol]] dest[:port[.prot]] [cos]

z add new
[--delay delay [delsigma[/delcorr]]]
[--drop drop_percentage[/drop_correlation]]
[--dup dup_percentage[/dup_correlation]]
[--bandwidth bandwidth]
[--drd drdmin drdmax [drdcongest]]

cnistnet u (start nistnet

cnistnet –R –G (status report on filters)

cnistnet -a hosta pinto10 --drop 10.0006 --bandwidth 10000000 –delay 50

cnistnet -a pinto10 hosta --bandwidth 10000000 –delay 50

Cnistnet –a 0 pinto10:5001 –drop 0.01 –delay 120

IPP Lecture 15 - 8

NISTNet GUI

IPP Lecture 15 - 9

NISTNet packet loss

z Random or congestion based packet loss

z --drop drop_percentage[/drop_correlation]

z Supports a RED-like queue with min and max thresholds
--drd drdmin drdmax [drdcongest]

z Option for ECN notification

IPP Lecture 15 - 10

NISTNet delay models

z Packet delay can be fixed or random

z For random delays user can specify
– Mean
– Standard deviation
– Linear correlation
– Default: derived heavy-tail distribution

IPP Lecture 15 - 11

NISTNet overhead

z NISTNet adds some overhead for a
packet passing through the “router”

z Calibration with packet generator

z 2 us overhead

z Additional variance from granularity of
RTC interrupts (122 us)

z OK on gigE NICs
– Though clumping above 100 mbs
– 20,000 packets/sec

IPP Lecture 15 - 12

NISTnet example

z comp1.cs.utk.edu has 2 NICs and NISTnet
module installed with IP forwarding

z 2nd interface is 10.0.0.1

z Target box is 10.0.0.3
– Other CS boxes need static route to 10.0.0.3

via comp1

z Examples
– ping from whisper
– ping from cetus1
– iperf from cetus2 comp1

NISTnet

cnistnet -u
cnistnet -a whisper.cs.utk.edu 10.0.0.3 --delay 50.000
cnistnet -a 10.0.0.3 whisper.cs.utk.edu --delay 50.000
cnistnet -a cetus1.cs.utk.edu 10.0.0.3 --delay 40.000 --drop 10.0
cnistnet -a cetus2.cs.utk.edu 10.0.0.3 --delay 20.000 --bandwidth 500000

10.0.0.1

10.0.0.3

160.36.57.151

IPP Lecture 15 - 13

Linux netem

z Part of 2.4 and 2.6 kernel

z Supports packet delay, loss, duplication, reordering (tc command)
– tc qdisc add dev eth0 root netem delay 100ms
– tc qdisc change dev eth0 root netem loss .1%
– tc qdisc change dev eth0 root netem duplicate 1%
– tc qdisc change dev eth0 root netem gap 5 delay 10ms

z Rate limits are provided by existing Linux queuing services
– tc qdisc add dev eth0 root handle 1: prio
– tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 200ms 10ms

distribution normal
– tc qdisc add dev eth0 parent 30:1 tbf rate 20kbit buffer 1600 limit 3000
– tc filter add dev eth0 protocol ip parent 1:0 prio 3 u32 match ip dst

65.172.181.4/32 flowid 10:3

z Filtering on net/host/ports
– tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 match ip src

4.3.2.1/32 match ip sport 80 0xffff flowid 10:1
IPP Lecture 15 - 14

dummynet

z Part of FreeBSD

z Managed with ipfw

z Provides delays, queues (WFQ), packet loss, bandwidth limits, multipath

z Filter on src/dst port or port range

ADSL path to moon

ipfw add pipe 3 ip from any to any out

ipfw add pipe 4 ip from any to any in

ipfw pipe 3 config bw 128Kbit/s queue 10 delay 1000ms plr 0.01

ipfw pipe 4 config bw 640Kbit/s queue 30 delay 1000ms

IPP Lecture 15 - 15

Simulation

z The three branches of science
– Theory
– Experiment
– Simulation

z Computer simulation a cornerstone of today’s scientific research
– Weather forecasting (hurricane path prediction)
– Global climate modeling
– Vehicle design (crash test simulation)
– Assembly line simulation
– Super nova simulation

z Simulators for training/education
– Flight simulators
– Physics “experiments”

IPP Lecture 15 - 16

Continuous vs discrete simulations
z Continuous simulation – simulation time

moves in monotonic increments
– Climate/weather modeling
– Game of life
– Real time required is a function of

computation required at each time step and
speed (and number) of computers
z Can be faster than realtime –weather

forecasting

z Discrete event simulation
– Network simulation
– Simulation time moves in jumps based on

time of “next event”
z E.g., packet arrives in 2 seconds, move

simulation clock ahead by 2 seconds
– Real time required is a function of number of

events -- lots of nodes, high packet rates will
take much longer than real time

480 km grid

60 km grid

How do initial conditions
affect result?

Does butterfly flapping its
wings in Brazil affect result?

IPP Lecture 15 - 17

Simulating a network

Host A
Host Brouter2router1

z Define a topology

z Define component characteristics
– Router: queuing discipline (FIFO), queue size
– Link: delay, bandwidth, bit error rate (BER) loss probability
– End nodes: TCP flavor, window size, del ACK, MSS, timer tick resolution

z Packet source (infinite (FTP), telnet, http, constant bit rate)

z Simulation is based on discrete events – packets moving from one
component to the next

L1 L2 L3

IPP Lecture 15 - 18

Discrete event simulation
z Permanet entities

– Nodes, routers, links

z Transient entities

– Packets
– Timer events

z Software handler for each
permanent entity

z Executive (scheduler) drives
the simulation based on a
time-ordered event list

z Components for random
numbers and statistical
distributions

z Instrumentation for tracing
events and reporting results

IPP Lecture 15 - 19

Event scheduling

z Executive (event scheduler) pulls the next event from
the event list and advances the simulation clock to the
time and invokes the indicated handler

– E.g., pass packet to “link handler”, link handler will insert
new event on list at time = now + link_delay

– Or TCP handler may add an event for “packet timeout” at
time = now + RTO (when ACK arrives for that packet later,
it may remove the event from the event list)

Time-ordered
event list

IPP Lecture 15 - 20

Life of a simulated packet

z Host A’s TCP passes packet to
link_handler for L1

z Link_handler puts event on list for
time now+transmission delay + link
delay

z Scheduler advances simulation
clock and invokes router_handler for
router1

z Router handler puts event on list at
time based on queuing delay
(number in queue) or drops!

z Scheduler advances clock, invokes
link_handler for L2

z L2 link_handler puts event on list
for time = now +delays

z Scheduler advances clock, invokes
router_handler for router2

z Router_handler puts event on list
based on queueing delay

z Scheduler advances clock, invokes
link_handler for L3

z L3 link handler puts event on list
based on delays

z Scheduler advances clock invokes
Host B TCP, which sends back an
ACK …

Host A
Host Brouter2router1

L1 L2 L3

IPP Lecture 15 - 21

Simulation software

z Write your own simulation in C or Java
– Need to write scheduler and all the handlers (one for each flavor of TCP…)

z Simulation languages
– SIMSCRIPT, SIMULA
– Generic simulation framework provided

z Scheduler, tracing, GUI, graphing, statistical packages
– Still have to build components of the “system” you are simulating

z Pre-built simulators for the “system” you are interested in
– Network simulation: ns, OPNET, SSFnet
– Ease of use, GUI, debugging, tracing, speed, cost
– Features: links, TCP’s, UDP, routing, wireless, link layer, scalable
– Reliability (e.g., trusted/realistic implementation of SACK)
– Extensible – modify or add “new” protocols

IPP Lecture 15 - 22

ns network simulator

z Discrete event simulator (free ☺)

z Packet-level

z Link layer and up

z Wired and wireless

z History
– Columbia NEST
– UCB REAL
– ns-1
– ns-2

z 100K lines of C++
z 70K lines of OTcl
z 30K lines of test suite
z 20K lines of documentation

z Platforms: UNIX boxes, some pieces on Windows (ns, nam)

IPP Lecture 15 - 23

Functionality of ns

z Wired world
– Point-to-point link, LAN
– Unicast/multicast routing
– Transport

z UDP
z TCP (Tahoe, Reno, NewReno, SACK, FACK, HSTCP ….)

– Application layer
z Wireless

– Mobile IP
– Ad hoc routing

z Tracing, visualization, animation, various utilities

IPP Lecture 15 - 24

Object-Oriented

+ Reusability

+ Maintenance

– Performance (speed and memory)

– Careful planning of modularity

z Combination (ugly) of C++ and Tcl
– C++ for “data”

z Per packet action
– Fast: event scheduler, TCP flavors

z You only mess with this if you’re extending the simulator
– OTcl for control

z Periodic or triggered action
z Tcl is what you’ll be using

+ Compromise between composibility and speed
– Learning and debugging

IPP Lecture 15 - 25

OTcl and C++: The Duality

C++ OTcl

Pure C++
objects

Pure OTcl
objects

C++/OTcl split objects

ns
IPP Lecture 15 - 26

Extending Tcl Interpreter

z OTcl: object-oriented Tcl

z TclCL: C++ and OTcl linkage

z Discrete event scheduler

z Data network components
– Link layer and up

– Emulation support

Tcl

OTcl

TclCL

ns-2

Event
Scheduler

Network
Components

C/C++

IPP Lecture 15 - 27

Hello World - Interactive Mode

swallow 71% ns

% set ns [new Simulator]

_o3

% $ns at 1 “puts \“Hello World!\””

1

% $ns at 1.5 “exit”

2

% $ns run

Hello World!

swallow 72%

IPP Lecture 15 - 28

Hello World - Batch Mode

simple.tcl

set ns [new Simulator]

$ns at 1 “puts \“Hello World!\””

$ns at 1.5 “exit”

$ns run

swallow 74% ns simple.tcl

Hello World!

swallow 75%

To run ns on the CS lab machines (cetus/hydra) you’ll need to
add some stuff to your PATH and LD_LIBRARY. See the
README in ~dunigan/ipp05/ns

Sample scripts are there as well

IPP Lecture 15 - 29

Intro to Tcl

z Interpreted command language

z Tcl script consists of one or more commands separated by new lines or
semicolons

z Command is followed by 0 or more words or arguments separated by
tabs or white space. State information is stored in variables

set a 5
set b [expr $a +6] ; # set b = a+6 is NOT what you want
puts “b is $b”

z Use $ to retrieve value of variables

z Use # for comments (;# at end of line)

z […] evaluates the command inside the [] and returns the value

z “ .. “ is a string, $variables value are substituted

z { … } defers evaluation

z Normal C operators and precedence + - * / | & && || == > < !=

IPP Lecture 15 - 30

More Tcl

conditionals and looping

if {$a < 17 } {

set x [expr $a/(3-$z)]

} else {

incr x

}

while {$bob == $alice} { … }

for {set i 0} {$i < 10} {incr i 3} {

puts “vector element $i: $vector($i)”

}

also has break and continue like C

IPP Lecture 15 - 31

More Tcl
lists

set x {1 3 a}

set y [lindex $x 1] ; # y is 3

set length [llength $x]

foreach val $x { puts “val is $val” }

set delay [lindex $argv 1] ;# command line args

if {$argc > 1} {
set proto [lindex $argv 0]
set buffer [lindex $argv 1]
set lrate [lindex $argv 2]

} else {
puts "usage: ns test.tcl <protocol> <buffer> <error rate>"

}

Tcl script to echo command line arguments
puts "Program: $argv0"
puts "Number of arguments: $argc"
set i 0
foreach arg $argv {

puts "Arg $i: $arg"
incr i

}

IPP Lecture 15 - 32

More Tcl

strings

set name “Bob and Alice”

set lth [string length $name]

if {$x == “test”} {

append x “ing”

set output [format “%.1f“ $rate]

}

i/o

set trace_wnd [open out.wnd w]

puts $trace_wnd "$now $curr_wnd“

close $trace_wnd

IPP Lecture 15 - 33

More Tcl

procedures “new” commands
need global to reference external variables
set a 43
set b 27
set bob “Bob”

proc test { a b } {
global bob
set c [expr $a + $b]
set d [expr [expr $a - $b] * $c]
for {set k 0} {$k < 10} {incr k} {

if {$k < 5} {
puts “k < 5, pow = [expr pow($d, $k)]”

} else {
puts “$bob k >= 5, mod = [expr $d % $k]”

}
}

}

test 43 27

usual builtin math functions sqrt(), sin(),pow(), log()…

IPP Lecture 15 - 34

Basic OTcl
Class Mom

Mom instproc greet {} {

$self instvar age_

puts “$age_ years old mom: How are you
doing?”

}

Class Kid -superclass Mom

Kid instproc greet {} {

$self instvar age_

puts “$age_ years old kid: What’s up,
dude?”

}

set mom [new Mom]

$mom set age_ 45

set kid [new Kid]

$kid set age_ 15

$mom greet

$kid greet

ns has several new “classes”, public variables, methods

set ns [new Simulator] set tcp [new Agent/TCP/Sack1]

set n1 [$ns node] $ns attach-agent $n0 $tcp

$ns at “10.0” finish set curcwnd [$tcp set cwnd_]

IPP Lecture 15 - 35

Next time …

z More ns

assignment 7

