
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 15

Emulation

Simulation

IPP Lecture 15 - 2

Evaluating the performance of TCP

Experimental
– Standalone testbeds
– Emulator testbeds
– Live tests on the Internet
– Active tools (iperf, ping, traceroute) / passive tools (tcpdump/netflows)
– Collect flow packet trace, full traffic traces
– Instrumented kernels (Web100)

Theoretical
– Analytical models to characterize a TCP flow
– Stochastic/statistical models to characterize flow interactions (background)
– Queuing models to characterize router behavior
– Linear feedback (control) systems to characterize optimal solutions

Simulation
– Repeatable, flexible, instrumented

IPP Lecture 15 - 3

Real tests or simulations

Live internet tests
– See results in ultimate environment

– Real TCP stacks/OS, traffic

– Vary time and host/paths

– Worry about impact?

Test beds
– Controlled traffic, but real OS

– Usually LAN based, no queuing

– Repeatable

– Not very good for cross-traffic

Emulators
– Same as testbed

– Plus control delay, loss, data rates,
dup’s, out-of-order

– Easy to reconfigure

Need tools to probe and measure

Simulations
– Easily reconfigured

Complex topology

Vary TCP flavor

– Repeatable

– Detailed feedback/instrumentation

– Add delay, loss, cross-traffic,
queues

– Randomness for confidence

– Investigate “new” networks/protocols

– cheap

– Can be slow

– Not real TCP

IPP Lecture 15 - 4

Network emulation
Real OS network stack and application testing in a controlled testbed

– Can use all your network tools, ping, iperf, tcpdump, ssh, nfs ….

Use a “modified” UNIX box as a router (2 NICs) that can introduce
– Packet loss
– Packet delay (select your RTT)
– Packet reordering
– Bandwidth limits (select bandwidth)
– Different queuing disciplines
– Src.port dst.port filters

Freeware implementations
– NISTNet, netem (linux)
– dummynet (freebsd)

Use to evaluate
– Your network application protocol
– Your cool mods to the kernel’s TCP stack
– OS’s TCP behavior

emulator

IPP Lecture 15 - 5

NISTNet

Linux kernel module plus configuration utility

Network in a box

Emulates packet loss (random and congestion-dependent), reordering,
bandwidth limits, delay (fixed and variable), duplicates, queues

IPP Lecture 15 - 6

NISTNet implementation

Kernel module intercepts all IP packets

Introduces delay/loss etc. based on source/dest filters

Module has packet queues, timer, filter tables
– Uses MC146818 realtime clock (RTC) for timer interrupts (122 us)

Configuration utility (application) configures module filters

IPP Lecture 15 - 7

NISTNet configuration

Command (script) based or GUI

Command line options (cnistnet)
-a src[:port[.protocol]] dest[:port[.prot]] [cos]

add new
[--delay delay [delsigma[/delcorr]]]
[--drop drop_percentage[/drop_correlation]]
[--dup dup_percentage[/dup_correlation]]
[--bandwidth bandwidth]
[--drd drdmin drdmax [drdcongest]]

cnistnet u (start nistnet

cnistnet –R –G (status report on filters)

cnistnet -a hosta pinto10 --drop 10.0006 --bandwidth 10000000 –delay 50

cnistnet -a pinto10 hosta --bandwidth 10000000 –delay 50

Cnistnet –a 0 pinto10:5001 –drop 0.01 –delay 120

IPP Lecture 15 - 8

NISTNet GUI

IPP Lecture 15 - 9

NISTNet packet loss

Random or congestion based packet loss

--drop drop_percentage[/drop_correlation]

Supports a RED-like queue with min and max thresholds
--drd drdmin drdmax [drdcongest]

Option for ECN notification

IPP Lecture 15 - 10

NISTNet delay models

Packet delay can be fixed or random

For random delays user can specify
– Mean
– Standard deviation
– Linear correlation
– Default: derived heavy-tail distribution

IPP Lecture 15 - 11

NISTNet overhead

NISTNet adds some overhead for a
packet passing through the “router”

Calibration with packet generator

2 us overhead

Additional variance from granularity of
RTC interrupts (122 us)

OK on gigE NICs
– Though clumping above 100 mbs
– 20,000 packets/sec

IPP Lecture 15 - 12

NISTnet example

comp1.cs.utk.edu has 2 NICs and NISTnet
module installed with IP forwarding

2nd interface is 10.0.0.1

Target box is 10.0.0.3
– Other CS boxes need static route to 10.0.0.3

via comp1

Examples
– ping from whisper
– ping from cetus1
– iperf from cetus2 comp1

NISTnet

cnistnet -u
cnistnet -a whisper.cs.utk.edu 10.0.0.3 --delay 50.000
cnistnet -a 10.0.0.3 whisper.cs.utk.edu --delay 50.000
cnistnet -a cetus1.cs.utk.edu 10.0.0.3 --delay 40.000 --drop 10.0
cnistnet -a cetus2.cs.utk.edu 10.0.0.3 --delay 20.000 --bandwidth 500000

10.0.0.1

10.0.0.3

160.36.57.151

IPP Lecture 15 - 13

Linux netem

Part of 2.4 and 2.6 kernel

Supports packet delay, loss, duplication, reordering (tc command)
– tc qdisc add dev eth0 root netem delay 100ms
– tc qdisc change dev eth0 root netem loss .1%
– tc qdisc change dev eth0 root netem duplicate 1%
– tc qdisc change dev eth0 root netem gap 5 delay 10ms

Rate limits are provided by existing Linux queuing services
– tc qdisc add dev eth0 root handle 1: prio
– tc qdisc add dev eth0 parent 1:3 handle 30: netem delay 200ms 10ms

distribution normal
– tc qdisc add dev eth0 parent 30:1 tbf rate 20kbit buffer 1600 limit 3000
– tc filter add dev eth0 protocol ip parent 1:0 prio 3 u32 match ip dst

65.172.181.4/32 flowid 10:3

Filtering on net/host/ports
– tc filter add dev eth0 parent 10:0 protocol ip prio 1 u32 match ip src

4.3.2.1/32 match ip sport 80 0xffff flowid 10:1
IPP Lecture 15 - 14

dummynet

Part of FreeBSD

Managed with ipfw

Provides delays, queues (WFQ), packet loss, bandwidth limits, multipath

Filter on src/dst port or port range

ADSL path to moon

ipfw add pipe 3 ip from any to any out

ipfw add pipe 4 ip from any to any in

ipfw pipe 3 config bw 128Kbit/s queue 10 delay 1000ms plr 0.01

ipfw pipe 4 config bw 640Kbit/s queue 30 delay 1000ms

IPP Lecture 15 - 15

Simulation

The three branches of science
– Theory
– Experiment
– Simulation

Computer simulation a cornerstone of today’s scientific research
– Weather forecasting (hurricane path prediction)
– Global climate modeling
– Vehicle design (crash test simulation)
– Assembly line simulation
– Super nova simulation

Simulators for training/education
– Flight simulators
– Physics “experiments”

IPP Lecture 15 - 16

Continuous vs discrete simulations
Continuous simulation – simulation time
moves in monotonic increments

– Climate/weather modeling
– Game of life
– Real time required is a function of

computation required at each time step and
speed (and number) of computers

Can be faster than realtime –weather
forecasting

Discrete event simulation
– Network simulation
– Simulation time moves in jumps based on

time of “next event”
E.g., packet arrives in 2 seconds, move
simulation clock ahead by 2 seconds

– Real time required is a function of number of
events -- lots of nodes, high packet rates will
take much longer than real time

480 km grid

60 km grid

How do initial conditions
affect result?

Does butterfly flapping its
wings in Brazil affect result?

IPP Lecture 15 - 17

Simulating a network

Host A
Host Brouter2router1

Define a topology

Define component characteristics
– Router: queuing discipline (FIFO), queue size
– Link: delay, bandwidth, bit error rate (BER) loss probability
– End nodes: TCP flavor, window size, del ACK, MSS, timer tick resolution

Packet source (infinite (FTP), telnet, http, constant bit rate)

Simulation is based on discrete events – packets moving from one
component to the next

L1 L2 L3

IPP Lecture 15 - 18

Discrete event simulation
Permanet entities

– Nodes, routers, links

Transient entities

– Packets
– Timer events

Software handler for each
permanent entity

Executive (scheduler) drives
the simulation based on a
time-ordered event list

Components for random
numbers and statistical
distributions

Instrumentation for tracing
events and reporting results

IPP Lecture 15 - 19

Event scheduling

Executive (event scheduler) pulls the next event from
the event list and advances the simulation clock to the
time and invokes the indicated handler

– E.g., pass packet to “link handler”, link handler will insert
new event on list at time = now + link_delay

– Or TCP handler may add an event for “packet timeout” at
time = now + RTO (when ACK arrives for that packet later,
it may remove the event from the event list)

Time-ordered
event list

IPP Lecture 15 - 20

Life of a simulated packet

Host A’s TCP passes packet to
link_handler for L1
Link_handler puts event on list for
time now+transmission delay + link
delay
Scheduler advances simulation
clock and invokes router_handler for
router1
Router handler puts event on list at
time based on queuing delay
(number in queue) or drops!
Scheduler advances clock, invokes
link_handler for L2

L2 link_handler puts event on list
for time = now +delays
Scheduler advances clock, invokes
router_handler for router2
Router_handler puts event on list
based on queueing delay
Scheduler advances clock, invokes
link_handler for L3
L3 link handler puts event on list
based on delays
Scheduler advances clock invokes
Host B TCP, which sends back an
ACK …

Host A
Host Brouter2router1

L1 L2 L3

IPP Lecture 15 - 21

Simulation software

Write your own simulation in C or Java
– Need to write scheduler and all the handlers (one for each flavor of TCP…)

Simulation languages
– SIMSCRIPT, SIMULA
– Generic simulation framework provided

Scheduler, tracing, GUI, graphing, statistical packages
– Still have to build components of the “system” you are simulating

Pre-built simulators for the “system” you are interested in
– Network simulation: ns, OPNET, SSFnet
– Ease of use, GUI, debugging, tracing, speed, cost
– Features: links, TCP’s, UDP, routing, wireless, link layer, scalable
– Reliability (e.g., trusted/realistic implementation of SACK)
– Extensible – modify or add “new” protocols

IPP Lecture 15 - 22

ns network simulator

Discrete event simulator (free ☺)

Packet-level

Link layer and up

Wired and wireless

History
– Columbia NEST
– UCB REAL
– ns-1
– ns-2

100K lines of C++
70K lines of OTcl
30K lines of test suite
20K lines of documentation

Platforms: UNIX boxes, some pieces on Windows (ns, nam)

IPP Lecture 15 - 23

Functionality of ns

Wired world
– Point-to-point link, LAN
– Unicast/multicast routing
– Transport

UDP
TCP (Tahoe, Reno, NewReno, SACK, FACK, HSTCP ….)

– Application layer
Wireless
– Mobile IP
– Ad hoc routing

Tracing, visualization, animation, various utilities

IPP Lecture 15 - 24

Object-Oriented

+ Reusability

+ Maintenance

– Performance (speed and memory)

– Careful planning of modularity

Combination (ugly) of C++ and Tcl
– C++ for “data”

Per packet action
– Fast: event scheduler, TCP flavors

You only mess with this if you’re extending the simulator
– OTcl for control

Periodic or triggered action
Tcl is what you’ll be using

+ Compromise between composibility and speed
– Learning and debugging

IPP Lecture 15 - 25

OTcl and C++: The Duality

C++ OTcl

Pure C++
objects

Pure OTcl
objects

C++/OTcl split objects

ns
IPP Lecture 15 - 26

Extending Tcl Interpreter

OTcl: object-oriented Tcl

TclCL: C++ and OTcl linkage

Discrete event scheduler

Data network components
– Link layer and up

– Emulation support

Tcl

OTcl

TclCL

ns-2

Event
Scheduler

Network
Components

C/C++

IPP Lecture 15 - 27

Hello World - Interactive Mode

swallow 71% ns

% set ns [new Simulator]

_o3

% $ns at 1 “puts \“Hello World!\””

1

% $ns at 1.5 “exit”

2

% $ns run

Hello World!

swallow 72%

IPP Lecture 15 - 28

Hello World - Batch Mode

simple.tcl

set ns [new Simulator]

$ns at 1 “puts \“Hello World!\””

$ns at 1.5 “exit”

$ns run

swallow 74% ns simple.tcl

Hello World!

swallow 75%

To run ns on the CS lab machines (cetus/hydra) you’ll need to
add some stuff to your PATH and LD_LIBRARY. See the
README in ~dunigan/ipp05/ns

Sample scripts are there as well

IPP Lecture 15 - 29

Intro to Tcl

Interpreted command language

Tcl script consists of one or more commands separated by new lines or
semicolons

Command is followed by 0 or more words or arguments separated by
tabs or white space. State information is stored in variables

set a 5
set b [expr $a +6] ; # set b = a+6 is NOT what you want
puts “b is $b”

Use $ to retrieve value of variables

Use # for comments (;# at end of line)

[…] evaluates the command inside the [] and returns the value

“ .. “ is a string, $variables value are substituted

{ … } defers evaluation

Normal C operators and precedence + - * / | & && || == > < !=

IPP Lecture 15 - 30

More Tcl

conditionals and looping

if {$a < 17 } {

set x [expr $a/(3-$z)]

} else {

incr x

}

while {$bob == $alice} { … }

for {set i 0} {$i < 10} {incr i 3} {

puts “vector element $i: $vector($i)”

}

also has break and continue like C

IPP Lecture 15 - 31

More Tcl
lists

set x {1 3 a}

set y [lindex $x 1] ; # y is 3

set length [llength $x]

foreach val $x { puts “val is $val” }

set delay [lindex $argv 1] ;# command line args

if {$argc > 1} {
set proto [lindex $argv 0]
set buffer [lindex $argv 1]
set lrate [lindex $argv 2]

} else {
puts "usage: ns test.tcl <protocol> <buffer> <error rate>"

}

Tcl script to echo command line arguments
puts "Program: $argv0"
puts "Number of arguments: $argc"
set i 0
foreach arg $argv {

puts "Arg $i: $arg"
incr i

}

IPP Lecture 15 - 32

More Tcl

strings

set name “Bob and Alice”

set lth [string length $name]

if {$x == “test”} {

append x “ing”

set output [format “%.1f“ $rate]

}

i/o

set trace_wnd [open out.wnd w]

puts $trace_wnd "$now $curr_wnd“

close $trace_wnd

IPP Lecture 15 - 33

More Tcl

procedures “new” commands
need global to reference external variables
set a 43
set b 27
set bob “Bob”

proc test { a b } {
global bob
set c [expr $a + $b]
set d [expr [expr $a - $b] * $c]
for {set k 0} {$k < 10} {incr k} {

if {$k < 5} {
puts “k < 5, pow = [expr pow($d, $k)]”

} else {
puts “$bob k >= 5, mod = [expr $d % $k]”

}
}

}

test 43 27

usual builtin math functions sqrt(), sin(),pow(), log()…

IPP Lecture 15 - 34

Basic OTcl
Class Mom

Mom instproc greet {} {

$self instvar age_

puts “$age_ years old mom: How are you
doing?”

}

Class Kid -superclass Mom

Kid instproc greet {} {

$self instvar age_

puts “$age_ years old kid: What’s up,
dude?”

}

set mom [new Mom]

$mom set age_ 45

set kid [new Kid]

$kid set age_ 15

$mom greet

$kid greet

ns has several new “classes”, public variables, methods

set ns [new Simulator] set tcp [new Agent/TCP/Sack1]

set n1 [$ns node] $ns attach-agent $n0 $tcp

$ns at “10.0” finish set curcwnd [$tcp set cwnd_]

IPP Lecture 15 - 35

Next time …

More ns

assignment 7

