
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 14

TCP models

TCP measurement

midterm assignment 6

IPP Lecture 14 - 2

Plan of attack

Network overview

BSD sockets and UDP

TCP
– Socket programming
– Reliable streams
– Header and states
– Flow control and bandwidth-delay
– Measuring performance
– Historical evolution (Tahoe …SACK)
– Congestion control

Network simulation (ns)

TCP accelerants

TCP implementations

TCP over wireless, satellite, …

LECTURES

14 Models and measurement

15 emulation and simulation

16 ns

17 S-TCP, HSTCP BI-TCP

18 Bandwidth estimation

19 Vegas, fast, westwood

20 AQM, RED, ECN. XCP

21 Satellite and asymmetric channels

22 Wireless

23 Parallel streams, rate based

24 Kernel implementation

25 Web100 and offload engines

26 Cluster TCP, zero copy

27 review

IPP Lecture 14 - 3

Evaluating the performance of TCP

Experimental
– Standalone testbeds
– Emulator testbeds
– Live tests on the Internet
– Active tools (iperf, ping, traceroute) / passive tools (tcpdump/netflows)
– Collect flow packet trace, full traffic traces
– Instrumented kernels (Web100)

Theoretical
– Analytical models to characterize a TCP flow
– Stochastic/statistical models to characterize flow interactions (background)
– Queuing models to characterize router behavior
– Linear feedback (control) systems to characterize optimal solutions

Simulation
– Repeatable, flexible, instrumented

IPP Lecture 14 - 4

Performance metrics

NOC issues: capacity management
– Utilization (peak, daily, hourly) trends
– Traffic mix (services), UDP vs TCP
– Link errors

Bulk traffic characteristics
– Statistical distribution (smooth, bursty)
– Correlations, patterns
– Interpacket arrival times, packet size distribution
– RTT jitter/distributions

Single flow characteristics
– Jitter
– Data rate
– Fair
– “friendly”
– duration

IPP Lecture 14 - 5

Motivation for TCP modeling

TCP operating scale is very large
– Models are required to gain deeper understanding of TCP dynamics

Uncertainties can be modeled as stochastic processes

Drive the design of TCP-friendly algorithms for multimedia applications

Optimize TCP performance

Some network models:

aggregate traffic models

queuing models

control system models

single-flow models

IPP Lecture 14 - 6

Modeling Internet traffic

To design congestion control protocols and provide “realistic” data for
network simulations, it is desirable to be able to characterize the
“background traffic” of the internet

Collect traffic traces at the core routers
– Huge data sets
– Several sites with data sets available
– Traffic characteristics evolve over the years

telnet email http streaming video gaming
More hosts, faster links

Long flows? Short flows?

Are packet arrival rates Poisson? Service rates uniform ?

No, Internet traffic is bursty, heavy-tailed distributions, self-similar

Elephants & mice

•A small percent of flows
carry bulk of traffic

•Lots of tiny flow

78% < 10 pkts

95% < 50 pkts

IPP Lecture 14 - 7

Heavy tailed distribution

Not nice bell-shaped curves

Heavy tails

Correlated

In your testing/simulation, your background traffic needs to mimic this
behavior

Packet delay distribution

Distribution of file sizes on a computer system is also heavy-tailed.
IPP Lecture 14 - 8

Self-similarity

Real word: visually similar over range
of spatial scales

Fractals: geometrically similar over all
spatial scales

Time series: statistically similar over
range of time scale

IPP Lecture 14 - 9

Network traffic self-similar

Ethernet and Internet traffic appear self-
similar [Willinger ’95]

Visual self similarity over 5 orders of
magnitude

X axis time, Y axis is packets/unit-time

Other network metrics are scale invariant
– TCP flow durations
– Bytes/unit time
– Interarrival times

IPP Lecture 14 - 10

Self-similar traffic

Traffic is bursty (on-off) Pareto distribution

Why?
– Complexity at many levels

Geographic scale (wide area internet) multiple routes
Concentrated traffic points (universities)
Different media speeds (modem, Ethernet, OC192)
Different media (wireless, cable)
Different services (http, streaming)
Temporal complexity

– Synchronization from router overflows?

Implications:
– Markovian models (for modeling or simulation) are not adequate since they

allow traffic to be “smoothed” out through finite buffering
– Using packet loss as a notice of congestion may prevent transport protocols

from utilizing available bandwidth

IPP Lecture 14 - 11

Queuing models

Network congestion can be viewed as classic queuing problem

Packets enter router at some arrival rate λ (packets/sec), router tries to
forward them on at some (server) rate µ. Queue can build even if λ = µ

– Server rate == transmission delay, e.g 200kbs link, 40 ms to put 1 KB pkt on wire
– 10 pkts in queue ahead of you, your RTT increases by 10*40 == 400 ms

Analytical queuing models allow us to predict queuing times, mean number
of packets in the queue, loss rates as function of µ and λ

For M/M/1 queues, assumptions are service times are exponential, arrival
rates are Poisson (they’re not), and infinite queues!

But the basic principles
apply, throughput
increases with the arrival
rate, but delay increases
as the queues build.

© Kurose

IPP Lecture 14 - 12

Control system model of a network

N users sharing resource

Each user presents a load (xi) e.g, packets/sec

Network provides some sort of feedback so users can adjust (increase
or decrease) their offered load over time to achieve operating goal

user n

user 2

user 1

∑ ∑xi > goal

feedback

x1

xn

IPP Lecture 14 - 13

Selecting a rate adjustment algorithm

linear vs non-linear
– xi(t+1) = a xi(t)+b
– xi(t+1) = xi(t) + a xi(t)k

Critera
– Efficient – operating just under capacity line
– Fair

Roughly, N users should each get 1/N of the capacity
(∑xi)2/(n(∑xi

2)) = 1 fair
– Converges quickly (responsiveness) and smoothly to an equilibrium

smoothness

Time

goal

Total load
on network

IPP Lecture 14 - 14

Additive increase, multiplicative decrease (AIMD)

flow 1’s allocation x1

flow 2’s
allocation
x2

Fairness
line

Efficiency line
(capacity)

P1

optimum

If over-utilized, decrease rapidly
(conservative)

If under-utilized, increase gradually

Converges to optimum!

Jain (’87) (DECnet) suggested
– Multiplicative decrease 7/8
– Additive increase 1

If net congested, decrease rate
multiplicatively, otherwise increase
rate additively

P0
P2

P3

IPP Lecture 14 - 15

Models of a TCP flow

We have already developed several models to characterize a single
network flow in a steady-state based on window size, segment size,
and RTT

– Bandwidth = windowsize/RTT
– BW(t) = W(t)/RTT

Latency = transmission delay + propagation delay

Bandwidth-delay product
– Given path RTT and capacity C (bits/second), for sliding-window flow

control, user must provide RTT*C bits of buffer space at both ends in order
to run at “full speed”

IPP Lecture 14 - 16

Models of TCP congestion control

TCP slow-start
– Data rate (cwnd) doubles for each arriving ACK
– To reach window size of N segments, takes log2(N) RTT’s
– After k RTT’s, instantaneous data rate is (2k+1 – 1)MSS/RTT

TCP AIMD
– Cut sending rate in half if congestion is detected (packet loss)
– Cwnd increased by 1 each RTT

In one second we will add (1/RTT) segments
So at end of that second we will have sped up by MSS/RTT2 bits/sec
If you double the RTT, it will take 4 times as long to reach data rate

IPP Lecture 14 - 17

Reno sawtooth

TCP Reno sender with send buffer bigger than router queue size

Steady-state data rate can be calculated from window dynamics

W
 w

in
do

w
 s

iz
e

RTT W/2 secs

Data rate: (area of box + area of triangle)/time

(W/2)2 + ½ (W/2)2 = 3/8 W2 per cycle = ¾ W /sec

W/2

IPP Lecture 14 - 18

TCP with periodic loss
We get the same saw-tooth if we have a path with constant packet loss
probablity of 1/p -- there is a packet loss after every p packets

Packets per cycle = (W/2)2 + ½ (W/2)2 = 3/8 W2 = 1/p or W = sqrt(8/3p)

data rate = (# pkts * MSS)/cycle-time = (MSS/p)/(RTT W/2)

data rate = inverse square-root p law

W
 w

in
do

w
 s

iz
e

RTT W/2 secs

W/2

pRTT
MSS 2/3

IPP Lecture 14 - 19

Inverse square root p law

If path has RTT of 200 ms and a loss probability of 0.05, then
average data rate with MSS of 1500 bytes is
– 1500/0.2 sqrt(1.5/0.05) = 41 Kbytes/sec

For a satellite path, RTT 590 ms and BER 10-5, max data rate is 8
mbs

Looking at it the other way: if you want to sustain a data rate of 10
gbs over a 100 ms RTT path, your loss rate must be less than 10-14

– Can even fiber do this?

As always, longer RTT aggravates the problem, and a bigger MSS
(MTU) can improve performance

pRTT
MSS 2/3

IPP Lecture 14 - 20

Theory vs real TCP Newreno

Model is good for low to moderate loss

Not so good for high loss – TCP timeouts, backoff not accounted for

(ns simulation with simple loss model with TCP Newreno)

pRTT
MSS 2/3

IPP Lecture 14 - 21

Refining the model

Model can be refined by
factoring in

– Dup Acks
– Timeouts
– Exponential backoff
– Receiver window

limits

)321()
8

33,1min(
3

2
1)(

2
0 ppbpTbpRTT

pB
++

≈

IPP Lecture 14 - 22

Variations on AIMD

AIMD(a,b) model – how much to decrease by, how much to increase by

TCP uses AIMD of (1, ½) – inverse square root p law says

Equating two, we get a = 3b/(2-b)

So for your congestion control algorithm you could choose any (a,b) but if you want
to be TCP-friendly, they should be related as above

– Example instead of cutting by ½ cut by 1/8 (b=1/8) then a should be 1/5

AIMD (1/5, 1/8) takes 5 RTT to increase cwnd by 1

W

(1-b)W

Window cut to (1-b)W

Duration: (b/a)W + 1

Loss rate: 1/p p packets in a cycle

pbb
aW

)2(
2
−

=

pbRTT
abbw

2
2−

=

pRTT
bw 2/3

=

IPP Lecture 14 - 23

Long Fat Networks (LFN)
TCP linear recovery on paths with high bandwidth and long RTT

– Takes cwnd/2 RTT’s and slope of line is MSS/RTT2 /sec bits/sec
– 10 Gig, 100 ms RTT needs window of 83,333 segments

Recovering from cwnd/2 takes 4,166 seconds – over an hour!

Some not so TCP-friendly proposals to speed recovery for LFNs
– Floyd’s HS TCP (a,b) a function of current cwnd (table lookup)
– Scalable TCP (1%,1/8), increase cwnd by 1% each ACK
– Virtual MSS (k, ½), increase cwnd by k/cwnd for each ACK

Jumbo frame (MTU=9000) is k=6 with added benefits

Easy to experiment with AIMD in ns

$tcp set decrease_num_ 0.875

$tcp set increase_num_ 32

IPP Lecture 14 - 24

Experimental measurements

Things to consider for both test beds and simulations

Learn about good experimental design
– Adequate tests and confidence intervals
– Random start times, re-order experiments
– Anecdotal (illustrate a point) vs prove a point
– Steady-state, test duration

Selecting and configuring your flavor of TCP
– Tahoe, Reno, Newreno, SACK, FACK …
– Window sizes, RTT, timer tick resolution, delayed ACK, Nagle
– Knowing what your OS is doing: timestamps, window-scaling, Linux
– Router queue sizes and management (droptail, RED, WFQ, ECN)

Selecting competing traffic
– Bottleneck links
– Realistic traffic? (bursty, Pareto)
– Traffic on the reverse path

IPP Lecture 14 - 25

Real tests or simulations

Live internet tests
– See results in ultimate environment

– Real TCP stacks/OS, traffic

– Vary time and host/paths

– Worry about impact?

Test beds
– Controlled traffic, but real OS

– Usually LAN based, no queuing

– Repeatable

– Not very good for cross-traffic

Emulators
– Same as testbed

– Plus control delay, loss, data rates,
dup’s, out-of-order

– Easy to reconfigure

Need tools to probe and measure

Simulations
– Easily reconfigured

Complex topology

Vary TCP flavor

– Repeatable

– Detailed feedback/instrumentation

– Add delay, loss, cross-traffic,
queues

– Randomness for confidence

– Investigate “new” networks/protocols

– cheap

– Can be slow

– Not real TCP

IPP Lecture 14 - 26

Live Internet tests

SLAC/s TCP stack tests 2003

Series of tests of different TCP stacks (NewReno, HSTCP, STCP,
Westwood, FAST, BI-TCP) over the wide area

Test nodes across US, Europe
– Different pairs participating at different times
– GigE interfaces, 0C12 bottleneck (622 mbs)

Used iperf, ping, UDP (competing traffic), some parallel streams too
– Vary background traffic, window size (RCVBUF/SNDBUF)
– Measure datarate and RTT (from concurrent ping)
– Measure stability in face of UDP background
– Measure fairness with competing TCP stacks

IPP Lecture 14 - 27

Measurements
20 minute tests, long enough to see stable patterns

Iperf reports incremental and cumulative throughputs at 5 second intervals

Ping interval about 100ms

ping

TCPs

UDP or TCP cross-traffic

ICMP/ping traffic

TCP bottleneck
Xs

TCPr

Xr

SLAC

Remote site

Ping traffic goes to TCPr when also
running cross-traffic
Otherwise goes to Xr

Utilization of SLAC ESnet link Sep-Nov ‘03

600 Mbps capacityOver a thousand 20
minute measurements
or 300 hours

IPP Lecture 14 - 28

Bandwidth and RTT (SLAC to CERN)

BI-TCP 8 MB window NewReno (16 streams) with UDP

IPP Lecture 14 - 29

Throughput

Avg throughput for optimal & large
window sizes from SLAC to CalTech,
UFl & Manchester

Stack more important for long RTTs

Single stream Reno & HSTCP-LP
poorer on large RTTs

IPP Lecture 14 - 30

Stability

Stability from SLAC to Caltech, UFl &
Manchester, with optimal and large

windows vs TCP stacks and UDP cross
traffic

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

R
en

o
TC

P
16 S

-T
C

P

Fa
st

 T
C

P

H
S

-T
C

P

Bi
c-

TC
P

H
 T

C
P

H
S

TC
P

-
LP

St
ab

ili
ty

 in
de

x Avg UDP 60s
Avg UDP 30s
Avg no UDP

Little difference between periodicity of UDP (30 & 60 secs)
HSTCP-LP & FAST have larger stability indices (less stability)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

S
-T

C
P

H
 T

C
P

B
ic

-T
C

P

H
S

-T
C

P

R
en

o
TC

P
 1

6

Fa
st

 T
C

P

R
en

o
TC

P

H
S

TC
P

-L
P

St
ab

ili
ty

Average
Caltech
UFlorida
Manchester

Short RTT is more stable

No UDP

+UDP

Stability from SLAC to Caltech, U Florida & Manchester

IPP Lecture 14 - 31

Fairness (F)

Most have good intra-protocol fairness (diagonal elements), except HS-TCP
Worse for larger RTT (Caltech F~0.999+-0.004, U Florida F~0.995+-0.14, Manchester
F~0.95+-0.05)
Inter protocol Bic & H appear more fair against others
Worst fairness are HSTCP-LP, P-TCP, S-TCP, Fast, HSTCP-LP
But cannot tell who is aggressive and who is timid

Avg Fairness from
SLAC to UFl. Cross-
traffic=>
Source

Reno
TCP
16

S-
TCP

Fast
TCP

HS-
TCP

Bic-
TCP

H
TCP

HSTCP-
LP Avg

P-TCP 1.00 0.92 0.89 0.90 0.95 0.94 0.69 0.90
S-TCP 0.92 1.00 0.87 0.90 0.91 0.92 0.78 0.90
Fast TCP 0.89 0.87 1.00 0.92 0.93 0.99 0.78 0.91
HS-TCP 0.90 0.90 0.92 0.97 0.95 0.94 0.95 0.93
Bic-TCP 0.95 0.91 0.93 0.95 1.00 0.99 0.93 0.95
H-TCP 0.94 0.92 0.99 0.94 0.99 1.00 0.95 0.96
HSTCP-LP 0.69 0.78 0.78 0.95 0.93 0.95 1.00 0.87
Average 0.90 0.90 0.91 0.93 0.95 0.96 0.87 0.92

IPP Lecture 14 - 32

Preliminary Conclusions (SLAC)

Advanced stacks behave like TCP-Reno single stream on short
distances for up to Gbits/s paths, especially if window size limited
TCP Reno single stream has low performance and is unstable on long
distances
P-TCP is very aggressive and impacts the RTT badly
HSTCP-LP is too gentle, this can be important for providing
scavenger service without router modifications. By design it backs
off quickly, otherwise performs well
Fast TCP is very handicapped by reverse traffic
S-TCP is very aggressive on long distances
HS-TCP is very gentle, like H-TCP has lower throughput than other
protocols
BI-TCP performs very well in almost all cases

IPP Lecture 14 - 33

Next time …

Network emulation

Network simulation (ns)

