
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 12

TCP evolution …

TCP Reno fast recovery
TCP NewReno partial ACK’s
TCP SACK FACK D-SACK

IPP Lecture 12 - 2

TCP additive increase multiplicative decrease (AIMD)
cwnd cwnd + 1/cwnd for each ACK
Loss cwnd cwnd/2

IPP Lecture 12 - 3

TCP evolution

RFC 793
– Crude RTT estimators
– Initial window blast
– Lost packet detection with timeout
– Possible go-back-N on lost packet
– Too many tiny packets

Jacobson ’88 (Tahoe, 4.3 BSD)
– Refined RTT estimator
– Slow-start
– AIMD congestion control

ssthresh cwnd/2
cwnd 1 (slow-start) up to ssthresh (1/2 previous data rate), then linear
increase of cwnd each RTT

– Fast retransmit – 3 dup ACK’s retransmit missing packet

Conservation of packets – a new
packet isn’t put into the network
until an old packet leaves. If
sender’s follow this principle,
the network should be robust in
the face of congestion.

IPP Lecture 12 - 4

Tahoe AIMD

Cut sending rate in half if packet is lost ssthresh cwnd/2

Set congestion window to 1 and do slow-start til ssthresh is reached
– cwnd 1 then double cwnd every ACK til ssthresh

Enter congestion avoidance phase (linear)
– cwnd cwnd + 1/cwnd for every ACK
– Increment cwnd by 1 every RTT

IPP Lecture 12 - 5

Tahoe fast retransmit

3rd dup & retransmit

cumulative ACK

slow-start

congestion avoidance

If 3rd dup ACK arrives, assume packet lost, retransmit and
do AIMD. Avoid waiting for timeout

IPP Lecture 12 - 6

TCP Reno -- fast recovery

Jacobson (email ’90), then RFC 2581

still same AIMD parameters (0.5, 1)

After packet loss (3 dup) and retransmit, keep ACK clocking (pipe full)
by sending new packet for each dup ACK received (if available window
will allow)

Since we keep ACK clocking, we don’t need slow-start when
congestion event ends (lost packet ACKd)

3rd dup ACK, cut cwnd in half, retransmit lost packet

Sender’s usable window min(awin, cwnd+ndup)

Sender effectively waits til half a window of dup ACKs arrive, then
sends a new packet for each additional dup ACK (cwnd cwnd/2)

– Tahoe waited til window was empty (full RTT), cwnd 1

When a “new” ACK arrives, exit fast recovery with cwnd cwnd/2

IPP Lecture 12 - 7

Reno

© Kurose

IPP Lecture 12 - 8

Reno cwnd and ssthresh

Slow-start to begin flow

3 lost packets

IPP Lecture 12 - 9

Reno recovery

The graph illustrates Reno sending new packets for dup ACKs after
half the dup ACKs were accounted for. This helps performance some,
the real advantage of Reno over Tahoe is starting cwnd at cwnd/2 and
not cwnd=1.

cwnd =15 when drop

cut to 7, so wait for 4 ACKs

Then send data for each
ACK

3 dup ACKs & retransmit

IPP Lecture 12 - 10

Reno vs Tahoe

Reno has faster recovery from packet loss (e.g., higher bandwidth)

IPP Lecture 12 - 11

Reno sawtooth

TCP Reno sender with send buffer bigger than router queue size

No slow-start portion as in Tahoe

W
 w

in
do

w
 s

iz
e

W/2 RTT secs

Data rate: (area of box + area of triangle)/time

(W/2)2 + ½ (W/2)2 = 3/8 W2 per cycle = ¾ W /sec
IPP Lecture 12 - 12

Reno performance (one drop)

Floyd’s results Tahoe vs Reno with one packet drop (ns)

(packet numbers are wrapped with mod for your viewing pleasure)

While Tahoe is idle following retransmit, after cwnd/2 dup
ACKs, Reno is transmitting with each dup ACK

IPP Lecture 12 - 13

Reno problems

If there are multiple packet drops in the same “window” (one RTT),
Reno usually has to timeout to recover. It’s slower than Tahoe in this
case! (Tahoe retransmits a lost packet each RTT)

IPP Lecture 12 - 14

Reno with 3 drops in the “window”

Window is 20 segments, RTT 100ms

20 packets in flight, packets
100,102,104 are lost, all are in the
“window” {100 … 119}

3 dup ACKs and retransmit 100

cwnd goes from 20 to 10

But Reno hangs then, and times out
after 1.5 seconds, cwnd 1 and
slow-start

IPP Lecture 12 - 15

Reno stuck

3 dup ACKS, retansmit 100

Inflight = 20 (or un ACK’d =
20)

Dup ACKs for rest of
window are received

Can’t send on each dup
ACK because “no room” at
the receiver

After RTT, cumulative ACK
for 100-101 arrives

•Un ACK’d window is now 119-102+1 == 18, but cwnd is now only 10

•Reno can’t send til un ACK’d drops to 10, but no more packets are in flight …
timeout

IPP Lecture 12 - 16

NewReno

Hoe (’95) and later RFC 2582

Modify (fix) Reno recovery
– If partial ACK arrives during Reno recovery, assume the next packet is lost,

and retransmit
– keeps ACK clock running
– Stay in recovery til last packet in window ACK’d

Out of order packet will cause unneeded retransmit, but worth it to fix
Reno timeout problem

If there are multiple drops in the window, one will be retransmitted each
RTT

IPP Lecture 12 - 17

NewReno fix

Same loss scenario
{100,102,104} lost

3 dup ACK, retransmit 100

Cut cwnd in half (20 10)

After 1 RTT, ACK for 100-
101, partial ACK,
retransmit 102 and
120,121

One more RTT, ACK for
102-103, retransmit 104
and 122,123

One more RTT, cumulative
ACK for rest of window,
exit recovery, cwnd = 10
(note packet burst from
cumulative ACK)

IPP Lecture 12 - 18

NewReno performance (4 drops in a window)

One retransmit per RTT

One retransmit then
timeout!

One retransmit per
partial ACK (one/RTT)

IPP Lecture 12 - 19

SACK

SACK (Selective ACK)
– First described by Jacobson (’88) RFC 1072
– Refined in RFC 2018 (’96)

TCP dup ACKs convey little information
– ACK clocking may be lost (Reno)
– Cumulative ACK can cause a burst
– NewReno sends new packets for each dup if available window allows

Selective ACK allows receiver to inform sender which segments have
arrived successfully

– Sender can fill in holes even when available window is full
– NewReno algorithms still decide when to send, SACK says “what” to send

Uses two TCP options
– SACK “permitted” (option 4) used in SYN SYN-ACK

Receiver should generate SACK’s only if it has received a permitted option
– SACK blocks (option 5) carries SACK info in ACK packet

IPP Lecture 12 - 20

SACK
+--------+--------+
| Kind=5 | Length |

+--------+--------+--------+--------+
| Left Edge of 1st Block |
+--------+--------+--------+--------+
| Right Edge of 1st Block |
+--------+--------+--------+--------+
| |
/ . . . /
| |
+--------+--------+--------+--------+
| Left Edge of nth Block |
+--------+--------+--------+--------+
| Right Edge of nth Block |
+--------+--------+--------+--------+

Max TCP option space is 10 words

max of 4 SACK block pairs

(only 3, if timestamp option on)

Pair of 32-bit words (sequence numbers)
indicating beginning and end of block of
received data

First SACK block MUST report the block
containing the most recently received segment

Receiver needs to do some bookkeeping to construct SACK blocks

Sender must accumulate SACK block info and use it when retransmitting packets

mark segments in SNDBUF that have been “received”

IPP Lecture 12 - 21

SACK examples

Sender sends 8 500-byte segments, first segment is dropped
----- SACK blocks --------------------

Triggering ACK Left Edge Right Edge
Segment
5000 (lost)
5500 5000 5500 6000
6000 5000 5500 6500
6500 5000 5500 7000
7000 5000 5500 7500
7500 5000 5500 8000
8000 5000 5500 8500
8500 5000 5500 9000

2nd example
5000 5500
5500 (lost)
6000 5500 6000 6500
6500 (lost)
7000 5500 7000 7500 6000 6500
7500 (lost)
8000 5500 8000 8500 7000 7500 6000 6500
8500 (lost)

IPP Lecture 12 - 22

SACK (tcptrace)

2 dropped packets, later packets arrive and are SACK’d
– Note “growth” of SACK block

Retransmissions and cumulative ACK

IPP Lecture 12 - 23

SACK option negotiation

SACK “permitted”, option 4, length 2

manitou.33878 > whisper.5001: S 885110161:885110161(0) win 5840 <mss
1460,sackOK,timestamp 45695408 0,nop,wscale 0> (DF)

4500 003c f421 4000 4006 a9ec c0a8 0104

a024 3add 8456 1389 34c1 b591 0000 0000

a002 16d0 cded 0000 0204 05b4 0402 080a

02b9 41b0 0000 0000 0103 0300

whisper.5001 > manitou.33878: S 2714686246:2714686246(0) ack 885110162 win 5792
<mss 1436,sackOK,timestamp 160286560 45695408,nop,wscale 5> (DF)

4500 003c 0000 4000 3406 aa0e a024 3add

c0a8 0104 1389 8456 a1ce d326 34c1 b592

a012 16a0 883c 0000 0204 059c 0402 080a

098d c760 02b9 41b0 0103 0305

IPP Lecture 12 - 24

SACKs in an ACK
69.252.162.198.5001 > 160.36.58.221.44165: . ack 3204001 win 64080

<nop,nop,timestamp 24421971 244071026,nop,nop,sack sack 1 {3205425:3215393} >
(DF) [tos 0x20]

4520 0040 9231 4000 3406 f0a2 45fc a2c6
a024 3add 1389 ac85 2862 2e0a 9e3d 1ecd
b010 fa50 1220 0000 0101 080a 0174 a653
0e8c 3a72 0101 050a 9e3d 245d 9e3d 4b4d

69.252.162.198.5001 > 160.36.58.221.44165: . ack 3204001 win 64080
<nop,nop,timestamp 24421977 244071026,nop,nop,sack sack 3
{3242449:3245297}{3238177:3239601}{3205425:3236753} > (DF) [tos 0x20]

4520 0050 9243 4000 3406 f080 45fc a2c6
a024 3add 1389 ac85 2862 2e0a 9e3d 1ecd
f010 fa50 424c 0000 0101 080a 0174 a659
0e8c 3a72 0101 051a 9e3d b4fd 9e3d c01d
9e3d a44d 9e3d a9dd 9e3d 245d 9e3d 9ebd

IPP Lecture 12 - 25

Multiple SACK blocks in an ACK packet

Loss event with multiple drops

TCP NewReno + SACK + FACK
– Some new packets transmitted

during event
– Re-transmits to fill holes based

on SACK

IPP Lecture 12 - 26

SACK with 3 drops

Same 3 drop example

Reno timed out

NewReno did one
retransmit each RTT for
partial ACK

When SACK info arrives,
sender can immediately
retransmit missing packets,
and we exit recovery in one
RTT

NewReno
Reno

IPP Lecture 12 - 27

SACK performance

No advantage for single drop

Shines when multiple drops

Example: 4 drops in a window

SACK is top performer

Most TCP’s today are
SACK+NewReno

Is this too aggressive?
– Multiple drops but cwnd/2
– Or divide cwnd by 2 for each

drop?

Applet data Flow statistics

53% experience loss

8% drop only one packet

12% experience timeout

IPP Lecture 12 - 28

Broken SACK ?

Strange SACKs from tcpdump
of flow between ORNL and
LBL.

Performance suffered
because of SACK failure and
resultant timeouts.

Bug in Cisco/PIX firewall:

Firewall was modifying TCP
sequence numbers outbound
and fixing them back when
packets returned, but failed to
account for sequence
numbers in SACK blocks!

IPP Lecture 12 - 29

FACK

Forward Acknowledgements (Mathis ’96)

Make better utilization of SACK info
– SACK + NewReno retransmits a new packet for each dup ACK
– FACK uses SACK block info to calculate exactly how many more packets may

be transmitted and can often transmit more than one packet per dup ACK
– Performs better than SACK+NewReno when many drops in window

As SACK blocks arrive during recovery, FACK recalculates “fack”
– fack == the most forward data held by the receiver
– snd.una is the last acknowledged byte of the sender (left edge)
– snd.nxt is the next byte to be sent (right edge)
– FACK calculates actual data outstanding in the flow,

awnd=snd.nxt-fack+retran_data where retran_data accounts for any segments
retransmitted during this recovery period

– When an ACK+SACK arrives these value are revised, and sender can send
multiple segments if the following holds: while(awnd < cwnd) sendsomething();

– Obeys our “conservation of packets” principle

Example, 5 consecutive packets
dropped –only one dup ACK for
that event, but SACK info will
indicate 5 are missing.

IPP Lecture 12 - 30

FACK

Typically forward ACK (fack) advances with each ACK/SACK

IPP Lecture 12 - 31

FACK faster retransmit

FACK adjusts the dup ACK test from if (dupcnt ==3) to
if ((fack – snd.una) > (3*MSS) || (dupcnt == 3)

If multiple segments are lost before the 3rd dup ACK arrives, the earlier
dup ACKs will carry SACK info that will allow a faster detection of
possible loss (or reorder) and a “faster” retransmit

If exactly one segment is lost, the two algorithms trigger recovery on
the same dup ACK

FACK improves throughput when there are multiple packet drops in
one recovery window

FACK is a little less bursty than SACK (a good thing)

Linux usually has FACK enabled (it can only work when SACK is
supported by both hosts)

IPP Lecture 12 - 32

FACK with 3 drops

Same 3 drop example

Transmits during recovery

No burst

Slightly faster

Bursts of packets are a bad
thing. TCP avoids bursts
with initial slow-start. But
we can still have cwnd/2
burst from cumulative ACK
after a loss event. (see
rate-halving studies)

IPP Lecture 12 - 33

SACK vs FACK 4 drops (Floyd’s simulations)

FACK is sending more
packets earlier

IPP Lecture 12 - 34

D-SACK

Duplicate SACK RFC 2883 (’00)

use of the SACK option for acknowledging duplicate packets

when duplicate packets are received, the first block of the SACK option
field can be used to report the sequence numbers of the packet that
triggered the acknowledgement

TCP sender could then use this information for more robust operation
where there are

– reordered packets
– ACK loss
– packet replication
– early retransmit timeouts

No additional SYN negotiation needed, just use SACK negotiation

IPP Lecture 12 - 35

D-SACK

The left edge of the D-SACK block specifies the first sequence number
of the duplicate contiguous sequence, and the right edge of the D-
SACK block specifies the sequence number immediately following the
last sequence in the duplicate contiguous sequence.

Distinguished from SACK in that segment extent is within ACK’d
segment space (past left edge of window)

Example, several ACK’s lost so sender retransmits segment 3000-
3499, receiver gets duplicate segment and sends D-SACK

Transmitted Received ACK Sent
Segment Segment (Including SACK Blocks)
3000-3499 3000-3499 3500 (ACK dropped)
3500-3999 3500-3999 4000 (ACK dropped)
3000-3499 3000-3499 4000, SACK=3000-3500

IPP Lecture 12 - 36

TCP evolution summary
Early fixes for tiny grams and silly window syndrome, source quench for
congestion avoidance

Jacobson fixes for congestion collapse: better RTT estimates, slow start,
AIMD (no more go-back-N), and fast retransmit (Tahoe)

Reno added fast recovery

NewReno fixed timeout problem with Reno (multiple drops in a window)

SACK/FACK allows sender to retransmit missing packets, faster recovery

Other tweaks, RFC 1323, window-scaling and timestamps

Most of these adjustments were to help TCP recover from packet loss
– Packet loss is how TCP detects congestion/link capacity
– Difficult to “see” these algorithms with tcpdump, need simulation or Web100

With no packet loss, SNDBUF/RCVBUF and bottleneck link speed control
TCP performance

There are more flavors of TCP that we will investigate later
– Vegas, HS TCP, BI TCP, scalable TCP, Westwood, …

IPP Lecture 12 - 37

TCP evolution
Split IP/TCP
’81 RFC 793 TCP
’82 RFC 813 delayed ACKs, silly window,
’84 nagle, source quench
ACK and buffer out of order (BSD UNIX)
‘88 slow-start, expo. backoff, cwnd/ssthresh , fast retransmit (Tahoe)
’90 Reno fast recovery
’90 header compression, path MTU discovery
SACK, window scale, timestamp (’90 RFC 1323)
’94 Vegas (congestion avoidance, delay-based) FAST ’04
’96 SACK RFC 2018 FACK
’99 New Reno (partial ACK) RFC 2582
’00 D-SACK RFC 28883
ECN/AQM
Congestion relief: HS TCP, BI TCP, Scalable TCP, Binomial TCP, TCP
Westwood,…

IPP Lecture 12 - 38

Concept Collection

ACK/NAK cumulative ACK
ACK clocking
AIMD
Bandwidth-delay product
Best effort
Bit error rate
Checksums
Client/server/concurrent/iterative
Congestion control/avoid
Conservation of packets
CIDR
CSMA/CD
cwnd/sstrhesh
Datagram vs reliable stream
Dup threshold
Exponential backoff
Flow control
Forward ACK
fragmentation

Layers/encapsulation
Maximum segment lifetime(MSL)
MTU MSS/MTU discovery
Network mask
Packet switching vs circuit-based
Partial ACK
promiscuous
Routing
RTT and RTT estimation
Selective ACK (SACK)
Self-clocking
Sliding window
Slow-start
Subnets/supernets
Switch vs hub
TTL

IPP Lecture 12 - 39

Next time …

Network programming in Java, Perl, Windows

review

