
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 11

TCP evolution …

TCP congestion control

TCP Tahoe

IPP Lecture 11 - 2

TCP congestion avoidance (1984)
z RFC 896 (1984) noted performance problems with growing Internet

z 1) Excess of small packets (inefficient)
– Silly window syndrome (Nagle fix)
– Too many ACKs (delayed ACK fix)

z 2) congestion collapse
– Interaction of reliable TCP on top of unreliable IP
– Problems at routers connecting links of widely different bandwidths
– Queues grow and overflow
– Senders are retransmitting but not adjusting sending rate, so problem

worsens
– Little new data getting through … network collapse

z Congestion fix (’84):
– Routers send ICMP source quench when queues start to build

z This is congestion avoidance
– When TCP sender receives a source quench, set “effective window” to zero

for 10 ACKs or so ?
– Source quench still allows ACKs and retransmissions

IPP Lecture 11 - 3

TCP congestion 1988
z The 1984 “recommendations” helped some …

z Problems
– Traffic bursty – sudden build up of queues and RTT
– Not all routers would send ICMP source quench
– Not all senders would respond to source quench with rate reduction
– At time of congestion when things are real “busy”, the router is supposed to

figure out who the big senders are and send ‘em ICMP messages
z Takes time away from forwarding operation (draining queue)
z Actually injects MORE packets into the network

z October ’86 (Van Jacobson)
– Data rate between Internet sites LBL and UC Berkeley (400 yards) dropped

by a factor of 1000! Congestion collapse was back.
– Recommendations (and implemented in 4.3 BSD)

z Better RTT variance estimation 9
z Exponential retransmit timer backoff 9
z Slow-start 9
z Congestion control (cwnd and ssthresh) (not congestion avoidance)

IPP Lecture 11 - 4

M/M/1 queues (text App. A)

z Network congestion can be viewed as classic queuing problem

z Packets enter router at some arrival rate λ (packets/sec), router tries to
forward them on at some (server) rate µ. Queue can build even if λ = µ

– Server rate == transmission delay, e.g 200kbs link, 40 ms to put 1 KB pkt on wire
– 10 pkts in queue ahead of you, your RTT increases by 10*40 == 400 ms

z Analytical queuing models allow us to predict queuing times, mean number
of packets in the queue, loss rates as function of µ and λ

z For M/M/1 queues, assumptions are service times are exponential, arrival
rates are Poisson (they’re not), and infinite queues! /

But the basic principles
apply, throughput
increases with the arrival
rate, but delay increases
as the queues build.

© Kurose

IPP Lecture 11 - 5

Congestion avoidance & control (Jain ‘88)

throughput

delay

load

knee cliff

If loads are small the network can
keep up. After the load reaches the
network capacity, throughput stops
increasing and delay (response)
gets slower and slower.

If the load continues to grow,
congestion occurs and packets are
dropped and throughput starts to
drop. If senders are retransmitting
packets already in the net, very little
new (good) data gets through
(congestion collapse).

IPP Lecture 11 - 6

Congestion avoidance & control

throughput

delay

load

knee cliff
At the knee, the increase in
throughput is small, but delay
(response time) starts to increase
dramatically.

At the cliff packets are being
dropped and throughput is falling.

Schemes that allow a network to
operate to the left of the knee are
congestion avoidance schemes.

Congestion control schemes try to
keep the network operating in the
region to the left of the cliff. (TCP)

Such schemes are “system control
problems” where the system senses
its state and provides feedback to
the senders.

IPP Lecture 11 - 7

Control system model of a network

z N users sharing resource

z Each user presents a load (xi) e.g, packets/sec

z Network provides some sort of feedback so users can adjust (increase
or decrease) their offered load over time to achieve operating goal

user n

user 2

user 1

∑ ∑xi > goal

feedback

x1

xn

IPP Lecture 11 - 8

Two user case

flow 1’s allocation x1

flow 2’s
allocation
x2

Fairness
line

Efficiency line
(capacity)

P0 optimum

z Flows are in pkts/sec or bytes/sec
– Sending rate (offered load)

z Blue line is link capacity
– Above blue line, over utilized
– Below blue line, under utilized

z Points along Fairness line mean
both flows have equal amounts

– Left of fairness line – x2 has more
– Right of fairness line -- x1 has more

z Question: how to converge to
optimum?

IPP Lecture 11 - 9

Selecting a rate adjustment algorithm

z linear vs non-linear
– xi(t+1) = a xi(t)+b
– xi(t+1) = xi(t) + a xi(t)k

z Critera
– Efficient – operating just under capacity line
– Fair

z Roughly, N users should each get 1/N of the capacity
z (∑xi)2/(n(∑xi

2)) = 1 fair
– Converges quickly (responsiveness) and smoothly to an equilibrium

smoothness

Time

goal

Total load
on network

IPP Lecture 11 - 10

Linear adjustments

flow 1’s allocation x1

flow 2’s
allocation
x2

Fairness
line

Efficiency line
(capacity)

P0 optimum

z Linear rate adjustment ax +b
– aD and bD for decrease
– aI and bI for increase

z Four possibilities
– Additive only (a=0)
– Multiplicative only (b=0)
– Additive increase, multiplicative

decrease (AIMD)
– Multiplicative increase, additive

decrease (MIAD)

z Additive only (magenta) (x+k,y+k)
– Doesn’t converge to optimum

z Multiplicative only (green) (kx,ky)
– Doesn’t converge to optimum

z MIAD
– Doesn’t converge to optimum

Equi-Fairness
line

IPP Lecture 11 - 11

Additive increase, multiplicative decrease (AIMD)

flow 1’s allocation x1

flow 2’s
allocation
x2

Fairness
line

Efficiency line
(capacity)

P1

optimum

z If over-utilized, decrease rapidly
(conservative)

z If under-utilized, increase gradually

z Converges to optimum!

z Jain (’87) (DECnet) suggested
– Multiplicative decrease 7/8
– Additive increase 1

z If net congested, decrease rate
multiplicatively, otherwise increase
rate additively

z How do we know net is congested?
What is the feedback mechanism?

P0
P2

P3

IPP Lecture 11 - 12

Congestion control feedback

Network assisted (explicit)

z Routers provide feedback
– ICMP source quench /
– Congestion bit (DECnet,

SNA, ECN)
– Rate sender should send at

End to end (implicit)

z No explicit feedback from
network

z End node infers congestion
from

– increased delay (RTT) – Vegas
z knee

– or packet loss (TCP)
z cliff

TCP originally had network assist (source quench). Today TCP uses
packet loss. Packet loss is ambiguous (loss may be due to something
other than congestion, bit error), so today there are proposals for network
assist through Explicit Congestion Notification (ECN bit) and more Active
Queue Management (AQM) in the routers (more later).

IPP Lecture 11 - 13

TCP congestion control ‘88

z Based on Jain work, Van Jacobson proposed dynamic window sizing
upon packet loss in TCP (sender rate adjustment)

z Implemented in 4.3 BSD (Tahoe) combined with slow-start

z TCP sender maintains two new state variables
– Congestion window (cwnd)
– Slow-start threshold (ssthresh)

z cwnd starts at 1, during slow-start, incremented by 1 for every ACK
received. In steady state, grows to min(SNDBUF, advertised window)

z On a timeout, record half the cwnd in ssthresh (multiplicative decrease)
and set cwnd to 1 and begin slow-start. When cwnd reaches ssthresh
switch to additive increase (add 1 to cwnd every RTT), the congestion
avoidance phase.

/* ACK arrived */

if (cwnd < ssthresh) cwnd += 1; /* slow-start, exponential */

else cwnd += 1/cwnd; /* congestion avoidance */

AIMD
a = 0.5
b = 1

IPP Lecture 11 - 14

TCP tahoe – no packet loss

z If there is no packet loss, congestion window (cwnd) grows in slow-start
til it reaches min(sender’s SNBUF, receiver’s RCVBUF)

z cwnd is just the amount of data to send in one RTT

z Not very interesting (trace from ns simulation)

IPP Lecture 11 - 15

TCP Tahoe
z AIMD (1,0.5)

– Data rate is cut in half on a timeout (Jain said cut it only by 1/8)

z Sender can not send more data than min(cwnd, SNDBUF, adv. window)

z ssthresh usually initialized to infinity or receiver’s advertised window

z TCP detects link capacity by increasing cwnd til there is a packet loss!

z With a bottleneck link (router drops), you get a sawtooth like pattern
– SNDBUF too big

ssthresh

Congestion control
– linear recovery

slow-start

cwnd to 21,
packet loss sets
ssthresh to
cwnd/2 (10), and
then cwndÅ 1

IPP Lecture 11 - 16

Tahoe with multiple losses

z If another loss occurs during recovery, cwnd is cut in half again …

z ssthresh is set to current cwnd/2

As load increases on net, cwnd for your flow decreases. If
load decreases, your cwnd will slowly increase.

IPP Lecture 11 - 17

Van jacobson figures

Jagged Î losses

Not sharing equally

6 KBs out of 25 KBs
missing?

IPP Lecture 11 - 18

z With modified TCP (Tahoe), fewer losses and fairer

Broken delayed ACK

IPP Lecture 11 - 19

z Old senders send about 25% more than will fit on the wire

IPP Lecture 11 - 20

z Old senders are using (goodput) only 75% of link, the remainder is
being used (wasted) for retransmissions of packets that didn’t need to
be retransmitted

IPP Lecture 11 - 21

Long fat pipe nasty
z Packet loss in slow-start – linear recovery!!

z If RTT is 160 ms, window of 1550 packets, loss when cwnd=50, then
cwnd+1 every RTT. That will take 1500 RTT’s or 240 seconds (4
minutes!)

average

instantaneous

Early losses

loss

8 mbs after 60
seconds

300 mbs link

IPP Lecture 11 - 22

Fast retransmit

z Observe all the dup ACK’s when packet is
lost, then the timeout

z Dup ACK’s tell us a packet is missing (or
out of sequence) AND that other packets
seem to be reaching the destination

z Jacobson (’88, Tahoe) recommends
retransmitting the missing segment if three
consecutive duplicate ACK’s arrive – “fast
retransmit” and enter congestion avoidance

– ssthreshÅ cwnd/2
– cwndÅ 1

z Means wait til all inflight data ACK’d

z This avoids waiting for timeout, improves
performance! (not as net friendly as those
big timeout pauses ☺)

167 kbs

48 kbs

No more window blasts, use slow-start
Avoid timeouts with 3 dup ACKs

IPP Lecture 11 - 23

Tahoe fast retransmit

z OS keeps a dup ACK counter

z If counter == threshold enter SS

z If “advancing” ACK arrives, clear
counter

z Dup threshold is 3 on most OS
– Some have configurable threshold
– Linux dynamically adjusts

z Dup threshold too small -- have
unneeded retransmits, add to net
congestion – packet out of order

z Threshold too big -- don’t respond
quickly enough or end up timing
out (poorer performance)

z If retransmitted packet is also lost,
timeout will eventually occur

IPP Lecture 11 - 24

Tahoe fast retransmit

3rd dup & retransmit

cumulative ACK

slow-start

congestion avoidance

IPP Lecture 11 - 25

Fast retransmit (tcptrace)

z tcptrace –rl tmp.dmp reports ACKs, duplicate ACKs, triple dupACKs

z xplot shows tripledup retransmission as green 3

IPP Lecture 11 - 26

TCP fairness

z First flow using all of link capacity, then 2nd flow starts, later stops

z With adequate buffers at router, no losses and fair sharing induced by
ACK clocking ANIMATION

IPP Lecture 11 - 27

TCP fairness with loss

z With smaller queue at router, both flows experience losses at different
times, but still pretty fair (worse for droptail queues)

IPP Lecture 11 - 28

Tahoe and RTT fairness
z Loss recovery is sensitive to RTT

– Slow-start doubles cwnd (data rate)
every RTT

– Linear recovery increments cwnd by
one segment (MSS) every RTT

z Nearby host will recover faster than
distant host (droptail queue)

– Example chap. 11 text
– Congestion
– Red flow 1349 kbs
– Green 60 kbs

IPP Lecture 11 - 29

Recovery speeds
z Slow-start data rate (exponential)

– cwndÅ1 means we have to wait one RTT til all inflight data is ACK’d before
we send any new data

– cwnd (number of segments) doubles every RTT
– After k RTT’s, instantaneous data rate is (2k+1 – 1)MSS/RTT
– If available window is N segments, takes log2(N) RTTs

z Linear recovery data rate
– cwnd + 1 every RTT, i.e., data rate increases by MSS/RTT

z In one second we will add (1/RTT) segments
z So at end of that second we will have sped up by MSS/RTT2 bits/sec
z If you double the RTT, it will take 4 times as long to reach data rate

– RTT = 100 ms, MSS =1460 Bytes, throughput is increasing by only
1460*8/(0.1)2 = 1.168 Mbits/sec

– If we start at 50 Mbs (cwnd/2), it will take 100/1.168 = 43 seconds to reach
100 Mbs

– Alternatively, bandwidth-delay window for the path is 856 segments
(1460B), so cwnd/2 is 428 segments, @ 1 segment/RTT = 428/0.1 = 42.8
seconds to open window back to 856

IPP Lecture 11 - 30

The case for bigger MTU’s

z Recovery rates sensitive to RTT (can’t fix that) and
MSS

z RTT
– Double RTT, double slow-start duration
– But linear recovery takes 4 times longer

z Window needs to be twice as big
z RTT twice as long
z hence square term (MSS/RTT2)

z MSS
– Ethernet MSS is MTU-headers= 1500 – 40 = 1460
– Jumbo frame 9180 bytes

z Reduces slow-start by a couple of RTTs
z improves linear recovery rate by a factor of 6

– Vote for bigger MTUs !

IPP Lecture 11 - 31

1500 Byte MTU vs 9000 byte MTU

z 100 mbs link, 60 ms RTT, Tahoe

z Jumbo frame slow-start is faster

z Packet drops at 2 s, 6 s, 8 s
– Jumbo slow-start slightly faster
– Linear phase 6x faster

z Jumbo frames across the wide area
will only work if all intervening routers
have jumbo MTUs (OK on Internet2
and ESnet)

z Jumbo speeds up LAN performance
– TCP data rate 700 mbs @ 1500 MTU

but 980 mbs @ 9180 MTU
– Less packet processing overhead
– 6x fewer interrupts

IPP Lecture 11 - 32

Recovery speed – delayed ACK

z As noted earlier, slow-start doubles once per ACK

z Similarly, linear phase adds 1/cwnd for each ACK

z Delayed ACK can slow both slow-start and linear phase

IPP Lecture 11 - 33

Packet reordering
z Out of order packets are not

uncommon
– Version of Juniper router under

load would reorder packets by 8,
e.g., {1,2,3,4,5,6,7,8} would go out
{2,3,4,5,6,7,8,1}

z If out of order more than 3, TCP
goes into congestion avoidance
(cwnd/2), even though there was
really no packet loss / (LBL

example, 289 unneeded retransmits)
Linux TCP actually “adapts” to flows with packet reordering.

if dupcounter == dupthreshold go into SS/CA

if ACK arrives “soon” (e.g., not lost, just out of order),

“cancel” SS/CA and increment dupthreshold for this flow

Linux saves last dupthreshold for this target host in local routing table,
so next connection to that target will use the larger threshold!

iperf –u –s (UDP) reports packet reordering D-SACK can help.

Do
over

IPP Lecture 11 - 34

TCP Tahoe summary

z Van Jacobson’s tweaks to TCP in 4.3 BSD (’88)

z Exponential backoff on timeouts

z Improved RTT estimator

z Slow-start (startup, packet loss, idle)

z Congestion management (AIMD) cwnd/ssthresh
– Sender can’t send more than min(cwnd, his SNDBUF, receiver’s adv. window)
– If packet loss, cut sending rate in half, then slowly increase

z Fast retransmit (3 dup ACKs), avoid timeouts

IPP Lecture 11 - 35

TCP control system

z TCP adjusts sending rate based on feedback (packet loss) from the network

z Adjustment is linear rate control (Additive Increase Multiplicative Decrease)

z The overall system formed by the total number of TCP flows operating
across the Internet is one of the largest man-made control systems ever
achieved in terms of both geographic scale and the number of inputs and
outputs!

IPP Lecture 11 - 36

Things that slow TCP down

z SNDBUF limits

z RCVBUF limits

z NIC speed or bottleneck link speed

z Packet loss

z Packet reordering

z Delayed ACKs, Nagle

z TCP congestion response

z Application “protocol”

z Recovery rate sensitive to RTT and MSS

IPP Lecture 11 - 37

Next time …

z More TCP evolution
– TCP fast recovery, TCP Reno
– TCP NewReno
– TCP SACK, D-SACK

assignment 5 and 6

