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Internet Programming & Protocols
Lecture  11

TCP evolution …

TCP congestion control

TCP Tahoe
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TCP congestion avoidance (1984)
z RFC 896 (1984) noted performance problems with growing Internet

z 1) Excess of small packets (inefficient)
– Silly window syndrome  (Nagle fix)
– Too many ACKs (delayed ACK fix)

z 2)  congestion collapse 
– Interaction of reliable TCP on top of unreliable IP
– Problems at routers connecting links of widely different bandwidths
– Queues grow and overflow
– Senders are retransmitting but not adjusting sending rate, so problem 

worsens
– Little new data getting through … network collapse

z Congestion fix (’84):
– Routers send ICMP source quench when queues start to build

z This is congestion avoidance
– When TCP sender receives a source quench, set “effective window” to zero 

for 10 ACKs or so ?
– Source quench still allows ACKs and retransmissions
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TCP congestion 1988
z The 1984 “recommendations” helped some …

z Problems
– Traffic bursty – sudden build up of queues and RTT
– Not all routers would send ICMP source quench
– Not all senders would respond to source quench with rate reduction
– At time of congestion when things are real “busy”, the router is supposed to 

figure out who the big senders are and send ‘em ICMP messages
z Takes time away from forwarding operation (draining queue)
z Actually injects MORE packets into the network

z October ’86 (Van Jacobson)
– Data rate between  Internet sites LBL and UC Berkeley (400 yards) dropped 

by a factor of 1000!  Congestion collapse was back.
– Recommendations (and implemented in 4.3 BSD)

z Better RTT variance estimation 9
z Exponential retransmit timer backoff 9
z Slow-start 9
z Congestion control (cwnd and ssthresh)  (not congestion avoidance)
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M/M/1 queues  (text App. A)

z Network congestion can be viewed as classic queuing problem

z Packets enter router at some arrival rate λ (packets/sec), router tries to 
forward them on at some (server) rate µ.  Queue can build even if λ = µ

– Server rate == transmission delay, e.g 200kbs link, 40 ms to put 1 KB pkt on wire
– 10 pkts in queue ahead of you, your RTT increases by 10*40 == 400 ms

z Analytical queuing models allow us to predict queuing times, mean number 
of packets in the queue, loss rates as function of µ and λ

z For M/M/1 queues, assumptions are service times are exponential, arrival 
rates are Poisson (they’re not), and infinite queues! /

But the basic principles 
apply, throughput 
increases with the arrival 
rate, but delay increases 
as the queues build.

© Kurose
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Congestion avoidance & control (Jain ‘88)

throughput

delay

load

knee cliff

If loads are small the network can 
keep up.  After the load reaches the 
network capacity, throughput stops 
increasing and delay (response) 
gets slower and slower.

If the load continues to grow, 
congestion occurs and packets are 
dropped and throughput starts to 
drop.  If senders are retransmitting 
packets already in the net, very little 
new (good) data gets through 
(congestion collapse).
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Congestion avoidance & control

throughput

delay

load

knee cliff
At the knee, the increase in 
throughput is small, but delay 
(response time) starts to increase 
dramatically.

At the cliff packets are being 
dropped and throughput is falling.

Schemes that allow a network to 
operate to the left of the knee are 
congestion avoidance schemes.

Congestion control schemes try to 
keep the network operating in the 
region to the left of the cliff. (TCP)

Such schemes are “system control 
problems” where the system senses 
its state and provides feedback to 
the senders.
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Control system model of a network

z N users sharing resource

z Each user presents a load (xi)  e.g, packets/sec

z Network provides some sort of feedback so users can adjust  (increase 
or decrease) their offered load over time to achieve  operating goal

user n

user 2

user 1

∑ ∑xi > goal

feedback

x1

xn
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Two user case

flow 1’s allocation x1

flow 2’s 
allocation 
x2

Fairness 
line

Efficiency line 
(capacity)

P0 optimum

z Flows are in pkts/sec or bytes/sec
– Sending rate (offered load)

z Blue line is link capacity
– Above blue line, over  utilized
– Below blue line, under utilized

z Points along Fairness line mean 
both flows have equal amounts

– Left of fairness line – x2 has more
– Right of fairness line  -- x1 has more

z Question: how to converge to 
optimum?
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Selecting a rate adjustment algorithm

z linear vs non-linear
– xi(t+1) = a xi(t)+b
– xi(t+1) = xi(t) + a xi(t)k

z Critera
– Efficient – operating just under capacity line
– Fair

z Roughly, N users should each get 1/N of the capacity
z (∑xi)2/(n( ∑xi

2)) = 1  fair
– Converges quickly (responsiveness) and smoothly to an equilibrium

smoothness

Time

goal

Total load 
on network
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Linear adjustments

flow 1’s allocation x1

flow 2’s 
allocation 
x2

Fairness 
line

Efficiency line 
(capacity)

P0 optimum

z Linear rate adjustment  ax +b
– aD and bD for decrease
– aI and bI for increase

z Four possibilities
– Additive only (a=0)
– Multiplicative only (b=0)
– Additive increase, multiplicative 

decrease (AIMD)
– Multiplicative increase, additive 

decrease (MIAD)

z Additive only (magenta) (x+k,y+k)
– Doesn’t converge to optimum

z Multiplicative only  (green) (kx,ky)
– Doesn’t converge to optimum

z MIAD
– Doesn’t converge to optimum

Equi-Fairness 
line
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Additive increase, multiplicative decrease (AIMD)

flow 1’s allocation x1

flow 2’s 
allocation 
x2

Fairness 
line

Efficiency line 
(capacity)

P1

optimum

z If over-utilized, decrease rapidly 
(conservative)

z If under-utilized, increase gradually

z Converges to optimum!

z Jain (’87)  (DECnet) suggested 
– Multiplicative decrease 7/8
– Additive increase 1

z If net congested, decrease rate 
multiplicatively, otherwise increase 
rate additively

z How do we know net is congested? 
What is the feedback mechanism?

P0
P2

P3
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Congestion control feedback

Network assisted (explicit)

z Routers provide feedback
– ICMP source quench /
– Congestion bit (DECnet, 

SNA, ECN)
– Rate sender should send at

End to end (implicit)

z No explicit feedback from 
network

z End node infers congestion 
from 

– increased delay (RTT) – Vegas
z knee

– or packet loss (TCP)
z cliff

TCP originally had network assist (source quench).  Today TCP uses 
packet loss.  Packet loss is ambiguous (loss may be due to something 
other than congestion, bit error), so today there are proposals for network 
assist through Explicit Congestion Notification (ECN bit) and more Active 
Queue Management (AQM) in the routers (more later).
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TCP congestion control ‘88

z Based on Jain work, Van Jacobson proposed dynamic window sizing 
upon packet loss in TCP (sender rate adjustment)

z Implemented in 4.3 BSD (Tahoe) combined with slow-start

z TCP sender maintains two new state variables
– Congestion window (cwnd)
– Slow-start threshold (ssthresh)

z cwnd starts at 1, during slow-start, incremented by 1 for every ACK 
received.  In steady state, grows to min(SNDBUF, advertised window)

z On a timeout, record half the cwnd in ssthresh (multiplicative decrease) 
and set cwnd to 1 and begin slow-start.  When cwnd reaches ssthresh
switch to additive increase (add 1 to cwnd every RTT), the congestion 
avoidance phase.

/* ACK arrived */

if (cwnd < ssthresh) cwnd += 1;  /* slow-start, exponential */

else cwnd += 1/cwnd;   /* congestion avoidance */

AIMD 
a = 0.5 
b = 1
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TCP tahoe – no packet loss

z If there is no packet loss, congestion window (cwnd) grows in slow-start 
til it reaches min(sender’s SNBUF, receiver’s RCVBUF)

z cwnd is just the amount of data to send in one RTT

z Not very interesting (trace from ns simulation)
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TCP Tahoe
z AIMD (1,0.5)

– Data rate is cut in half on a timeout (Jain said cut it only by 1/8)

z Sender can not send more data than min(cwnd, SNDBUF, adv. window)

z ssthresh usually initialized to infinity or  receiver’s advertised window

z TCP detects link capacity by increasing cwnd til there is a packet loss!

z With a bottleneck link (router drops), you get a sawtooth like pattern
– SNDBUF too big

ssthresh

Congestion control 
– linear recovery

slow-start

cwnd to 21, 
packet loss sets 
ssthresh to 
cwnd/2 (10), and 
then cwndÅ 1
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Tahoe with multiple losses

z If another loss occurs during recovery, cwnd is cut in half again …

z ssthresh is set to current cwnd/2

As load increases on net, cwnd for your flow decreases. If 
load decreases, your cwnd will slowly increase.
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Van jacobson figures

Jagged Î losses

Not sharing equally

6 KBs out of 25 KBs
missing?
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z With modified TCP (Tahoe), fewer losses and fairer

Broken delayed ACK
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z Old senders send about 25% more than will fit on the wire
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z Old senders are using (goodput) only 75% of link, the remainder is 
being used (wasted) for retransmissions of packets that didn’t need to 
be retransmitted
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Long fat pipe nasty
z Packet loss in slow-start – linear recovery!!

z If RTT is 160 ms, window of 1550 packets, loss when cwnd=50, then 
cwnd+1 every RTT.  That will take 1500 RTT’s or 240 seconds (4 
minutes!)

average

instantaneous

Early losses

loss

8 mbs after 60 
seconds

300 mbs link
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Fast retransmit

z Observe all the dup ACK’s when packet  is 
lost, then the timeout

z Dup ACK’s tell us a packet is missing  (or 
out of sequence) AND that other packets 
seem to be reaching the destination

z Jacobson (’88, Tahoe) recommends 
retransmitting the missing segment if three 
consecutive duplicate ACK’s arrive – “fast 
retransmit” and enter congestion avoidance

– ssthreshÅ cwnd/2
– cwndÅ 1

z Means wait til all inflight data ACK’d

z This avoids waiting for timeout, improves 
performance! (not as net friendly as those 
big timeout pauses ☺ )

167 kbs

48 kbs

No more window blasts, use slow-start 
Avoid timeouts with 3 dup ACKs
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Tahoe fast retransmit

z OS keeps a dup ACK counter

z If counter == threshold enter SS

z If “advancing” ACK arrives, clear 
counter

z Dup threshold is 3 on most OS
– Some have configurable threshold
– Linux dynamically adjusts

z Dup threshold too small -- have 
unneeded retransmits, add to net 
congestion – packet out of order

z Threshold too big -- don’t respond 
quickly enough or end up timing 
out (poorer performance)

z If retransmitted packet is also lost, 
timeout will eventually occur
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Tahoe fast retransmit

3rd dup & retransmit

cumulative ACK

slow-start

congestion avoidance
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Fast retransmit (tcptrace)

z tcptrace –rl tmp.dmp reports ACKs, duplicate ACKs, triple dupACKs

z xplot shows tripledup retransmission as green 3
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TCP fairness

z First flow using all of link capacity, then 2nd flow starts, later stops

z With adequate buffers at router, no losses and fair sharing induced by 
ACK clocking  ANIMATION
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TCP fairness with loss

z With smaller queue at router, both flows experience losses at different 
times, but still pretty fair (worse for droptail queues)
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Tahoe and RTT fairness
z Loss recovery is sensitive to RTT

– Slow-start doubles cwnd (data rate) 
every RTT

– Linear recovery increments cwnd by 
one  segment  (MSS) every RTT

z Nearby host will recover faster than 
distant host (droptail queue)

– Example chap. 11 text
– Congestion
– Red flow 1349 kbs
– Green 60 kbs
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Recovery speeds
z Slow-start data rate (exponential)

– cwndÅ1 means we have to wait one RTT til all inflight data is ACK’d before 
we send any new data

– cwnd (number of segments) doubles every RTT
– After k RTT’s, instantaneous data rate is (2k+1 – 1)MSS/RTT
– If available window is N segments, takes log2(N) RTTs

z Linear recovery data rate
– cwnd + 1 every RTT, i.e., data rate increases by MSS/RTT

z In one second we will add (1/RTT) segments
z So at end of that second we will have sped up by MSS/RTT2 bits/sec
z If you double the RTT, it will take 4 times as long to reach data rate

– RTT = 100 ms, MSS =1460 Bytes,  throughput is increasing by only
1460*8/(0.1)2 = 1.168 Mbits/sec

– If we start at 50 Mbs (cwnd/2),  it will take 100/1.168 = 43 seconds to reach 
100 Mbs

– Alternatively, bandwidth-delay window for the path is 856 segments 
(1460B), so cwnd/2 is 428 segments, @ 1 segment/RTT = 428/0.1 = 42.8 
seconds to open window back to 856
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The case for bigger MTU’s

z Recovery rates sensitive to RTT (can’t fix that) and 
MSS

z RTT
– Double RTT, double slow-start duration
– But linear recovery takes 4 times longer

z Window needs to be twice as big
z RTT twice as long 
z hence square term (MSS/RTT2)

z MSS
– Ethernet MSS is MTU-headers= 1500 – 40 =   1460
– Jumbo frame 9180 bytes

z Reduces slow-start by a couple of RTTs
z improves  linear recovery rate by a factor of 6

– Vote for bigger MTUs !
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1500 Byte MTU vs 9000 byte MTU

z 100 mbs link, 60 ms RTT, Tahoe

z Jumbo frame slow-start is faster

z Packet drops at 2 s, 6 s, 8 s
– Jumbo slow-start  slightly faster
– Linear phase 6x faster

z Jumbo frames across the wide area 
will only work if all intervening routers 
have jumbo MTUs (OK on Internet2 
and ESnet)

z Jumbo speeds up LAN performance
– TCP data rate 700 mbs @ 1500 MTU 

but 980 mbs @ 9180 MTU
– Less packet processing overhead
– 6x fewer interrupts
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Recovery speed – delayed ACK

z As noted earlier, slow-start doubles once per ACK

z Similarly, linear phase adds 1/cwnd for each ACK

z Delayed ACK can slow both slow-start and linear phase
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Packet reordering
z Out of order packets are not 

uncommon
– Version of Juniper router under 

load would reorder packets by 8, 
e.g., {1,2,3,4,5,6,7,8} would go out 
{2,3,4,5,6,7,8,1}

z If out of order more than 3, TCP 
goes into congestion avoidance 
(cwnd/2), even though there was 
really no packet loss  / (LBL 

example, 289 unneeded retransmits)
Linux TCP actually “adapts” to flows with packet reordering.

if  dupcounter == dupthreshold go into SS/CA

if ACK arrives “soon” (e.g., not lost, just out of order), 

“cancel” SS/CA and increment dupthreshold for this flow

Linux saves last dupthreshold for this target host in local routing table, 
so next connection to that target will use the larger threshold!

iperf –u –s (UDP) reports packet reordering    D-SACK can help.

Do 
over
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TCP Tahoe summary

z Van Jacobson’s tweaks to TCP in 4.3 BSD (’88)

z Exponential backoff on timeouts

z Improved RTT estimator

z Slow-start (startup, packet loss, idle)

z Congestion management (AIMD) cwnd/ssthresh
– Sender can’t send more than min(cwnd, his SNDBUF, receiver’s adv. window)
– If packet loss, cut sending rate in half, then slowly increase

z Fast retransmit ( 3 dup ACKs), avoid timeouts
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TCP control system

z TCP adjusts sending rate based on feedback (packet loss) from the network

z Adjustment is linear rate control (Additive Increase Multiplicative Decrease)

z The overall system formed by the total number of TCP flows operating 
across the Internet is one of the largest man-made control systems ever 
achieved in terms of both geographic scale and the number of inputs and 
outputs!
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Things that slow TCP down

z SNDBUF limits

z RCVBUF limits

z NIC speed or bottleneck link speed

z Packet loss

z Packet reordering

z Delayed ACKs, Nagle

z TCP congestion response

z Application “protocol”

z Recovery rate sensitive to RTT and MSS
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Next time …

z More TCP evolution
– TCP fast recovery, TCP Reno
– TCP NewReno
– TCP SACK, D-SACK

assignment 5 and 6


