
Internet Programming & Protocols
Lecture 10

TCP RTT estimation
Tiny packets – delayed ACKs, Nagle, silly windows
TCP timers
TCP slow-start

IPP Lecture 10 - 2

Plan of attack

Network overview

BSD sockets and UDP

TCP
– Socket programming
– Reliable streams
– Header and states
– Flow control and bandwidth-delay
– Measuring performance
– Historical evolution
– Congestion control

Network simulation (ns)

TCP accelerants

TCP implementations

TCP over wireless, satellite, …

IPP Lecture 10 - 3

Bandwidth delay product

Buffers too small, and you run slow 86kb, just right is 183 kbs

Buffers too big, consume host/net resources, may cause congestion,
increase delay (RTT), doesn’t run any faster

Applet data
User buffers

16K 18%

64K 55%

128K 7%

256K 11%

Bigger 8%

IPP Lecture 10 - 4

Timeouts and RTT estimation

TCP handles lost packets with a send timer for data packets.
– If the data packet is lost, or the returned ACK is lost, the timer will expire

and TCP will retransmit the lost packet, restarting the timer.
RFC 793 says nothing about backoff (that came later)
RFC 793 says nothing about the receiver retaining out of order packets,
so if sender is using N-packet window, on a timeout, it may re-transmit
any other packets that were sent after the missing packet (go-back-N)

What to use for a timeout value?
– Too small, and sender may unnecessarily re-transmit, congest network.
– Too large, and application performance may suffer
– Need to wait at least one RTT time
– But RTT may vary

Routing path may change
Queuing delays at various routers or even at destination host
Need dynamic estimate of RTT

– Note time when segment sent, then when ACK arrives == RTT

IPP Lecture 10 - 5

RTT estimation (RFC 793)

Since RTT will be fluctuating, RFC
793 suggests a weighted average
R αR + (1- α)M

where R is current RTT estimate
and M is latest measurement
and α is 0.9

The timeout value (RTO) is βR
where β=2 (in RFC 793) to account
for RTT variations

RFC 793: RTO min 1 sec, max 60 s

Jacobson (’88) notes that this β can adapt to loads of at most 30%.
Above that point, a connection will respond to load increases by
retransmitting packets that have only been delayed. This is useless
work for the network and can lead to congestion collapse.

© Kurose

IPP Lecture 10 - 6

Jacobson RTT estimator

Jacobson extends the RFC 793 estimator by keeping track of the
variance in the RTT. RTO is calculated based on both the mean and
variance.

To keep the arithmetic simple in the kernel, mean deviation (E) is used
to approximate standard deviation.

E = M – R

R R + g E g is the gain (1/8)

D D + h (| E | -D) D is smoothed mean deviation

h is ¼

RTO = R + 4D

arithmetic can be done with shifts and “implied” binary fixed point

Implemented in 4.3BSD. Initial R is 0, initial D is 3 seconds, initial RTO

is 6 seconds. Same bounds on RTO (min 1 sec, max 60 secs)

IPP Lecture 10 - 7

RTT estimators

Solid line is estimate, dots are actual measured RTT

This better RTT estimator is one form of TCP congestion
control – better timeout values.

Packet burst can cause sudden queue build up, difficult for
estimator to track burstiness

IPP Lecture 10 - 8

4.3 BSD (Tahoe) RTT estimation

Jacobson’s RTT estimator incorporated in 4.3 BSD

when kernel sends a TCP data packet for a flow, timer is started.
– Actually a counter updated when TCP 500 ms ticker fires
– TCP stores sequence number and tick counter value

Usually only time one packet per RTT
– Other packets in the available window could be sent but not timed

When ACK for packet arrives note current tick count, calculate RTT and
update estimators and RTO, start new timer if unACK’d data in flight

Ambiguity when ACK arrives for re-transmitted packet
– Karns: don’t do RTT estimation on re-transmitted packets

On each tick interrupt (500 ms), check if packet has “timed out”
– Subtract stored tick value from current tick counter, if greater than RTO,

retransmit

New (optional) timestamp option permits easier RTT calculations (later)

RTT

IPP Lecture 10 - 9

Exponential backoff

Jacobson ’88 (BSD 4.3)

Exponential backoff when same packet has to be retransmitted
– Like Ethernet, if congestion is bad, keep backing off so congestion reduced
– First try after RTO seconds, then 2*RTO, then 4*, then 8* …

Finite number of tries then close connection

Why exponential backoff?
– Network is good approximation to a linear system

Composed of linear operators (integrators, delays, gain stages,…)
Linear system theory says, if system stable, the stability is exponential
If network is unstable (due to random load shocks), stabilize with
exponential damping to excitation sources (e.g., senders)

IPP Lecture 10 - 10

Lost connection and exponential backoff

Connection breaks while sender is sending data. Retransmit with
exponential backoff, eventually write() fails (connection closed (RST))

14:04:09.729116 thdsun.1566 > victory.7654: P 1:6(5) ack 1 win 16384

14:04:09.729116 victory.7654 > thdsun.1566: P 1:6(5) ack 6 win 32736 (DF)

14:04:09.779118 thdsun.1566 > victory.7654: . ack 6 win 16379

14:04:26.079726 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:26.679749 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:28.679824 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:32.679973 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:40.680271 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:04:56.680869 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:05:28.682063 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:06:32.684451 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:07:36.686838 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:08:40.689225 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

14:09:44.691611 thdsun.1566 > victory.7654: P 6:11(5) ack 6 win 16379

exponential backoff, max 11 tries (not in RFC 793, but in 4.3 BSD and later)

Tom pulls out Ethernet cable

IPP Lecture 10 - 11

RFC 793 tweaks

Jacobson’s fixes help TCP perform better under heavy load, reducing
unnecessary re-transmissions and backing off in the face of packet loss

Jacobson also implemented additional congestion control features
(next time)

The other problem noted with TCP flows in the 80’s was too many tiny
packets

– Early implementations sent an ACK for each data packet and another ACK
packet for the window advertisement, then maybe another packet with the
reply data

– Small changes in the receiver’s advertised window (as application
consumed data from receive buffer) resulted in ACK packets carrying new
window info (Silly Window syndrome)

IPP Lecture 10 - 12

Delayed ACKs
RFC 813 ’82

Receiver should delay sending an ACK in the hopes that it can be
piggybacked on data (timer typically 200 ms, max 500 ms)

Receiver should only ACK “immediately” out of order packets or if
2nd packet arrives before timer expires

– Steady flow, ACKing every other packet

If receiver has data to send back, you won’t see delayed ACKs

Good news ☺
– a delayed ACK can substantially reduce protocol processing

overhead by reducing the total number of packets to be
processed

– Reduce packet load on network

Bad news
– excessive delays on ACK's can disturb the round-trip timing
– delay can disturb packet "clocking" algorithms
– Delay can reduce TCP bandwidth (slow-start)
– Broken implementations (“stretch ACK”)

Ack 77

Ack 79

snd 78

snd 80

snd 79

snd 81

Ack 81

IPP Lecture 10 - 13

TCP ACK generation [RFC 1122, RFC 2581]

Event at Receiver

Arrival of in-order segment with
expected seq #. All data up to
expected seq # already ACKed

Arrival of in-order segment with
expected seq #. One other
segment has ACK pending

Arrival of out-of-order segment
higher-than-expect seq. # .
Gap detected

Arrival of segment that
partially or completely fills gap

TCP Receiver action

Delayed ACK. Wait up to 200ms
for next segment. If no next segment,
send ACK

Immediately send single cumulative
ACK, ACKing both in-order segments

Immediately send duplicate ACK,
indicating seq. # of next expected byte

Immediate send ACK, provided that
segment starts at lower end of gap

© Kurose

IPP Lecture 10 - 14

Tinygrams and Nagle algorithm

Interactive sessions (telnet/rlogin) generate a packet per keystroke
– 40 bytes of header, one byte of data, then the return ACK, then echo data
– On congested wide-area nets these tiny-grams contribute to congestion

data coalescing (Nagle ‘84, RFC 896)
– Connection can have only one outsanding “small” segment
– Sender should collect small amounts of data and send in one segment

Delay 200 ms before sending
– Or if ACK comes in, send the next segment.

Delayed ACK can slow things even more
– Often enabled by default, some applications (X for mouse movements)

need to disable Nagle (setsockopt(), SO_NODELAY)

IPP Lecture 10 - 15

Silly window syndrome

Another source of small packets in the early 80s resulted from TCP’s
flow control mechansim

Some receiver side implementations would send an “available window”
update (empty ACK) each time the application read a little more data

Some sending side implementations would send a wee bit of data any
time the “available window” allowed

Lots of empty ACK packets, lots of tiny data packets … inefficient

IPP Lecture 10 - 16

TCP Flow control: available window from receiver

(Suppose TCP receiver discards out-of-order segments)

spare room in buffer

= RcvWindow

= RcvBuffer-[LastByteRcvd -
LastByteRead]

Rcvr advertises spare room by
including value of RcvWindow in
segments

Sender limits unACKed data to
RcvWindow

– guarantees receive buffer
doesn’t overflow

IPP Lecture 10 - 17

Silly window syndrome
Receiver slowly consuming receive buffer data. New available window
update for each nibble…

Sender agressively sends a few bytes whenever the receive window
allows

Inefficient use of bandwidth (losts of header overhead, lots of packets)

IPP Lecture 10 - 18

Silly window syndrome fixes

Receiver: don’t advertise small segments
– Only advertise new window if it bigger than ½ MSS or ½ receiver’s buffer

space (whichever is smaller)

Sender (RFC 896, Nagle): only transmit if
– A) full-sized segment can be sent
– B) can send at least one-half the advertised window
– C) send everything we have when no outstanding data (not expecting an

ACK) and when Nagle is disabled
If Nagle enabled, wait 200 ms before sending tinygram

IPP Lecture 10 - 19

Echo delayed

sending 2K packet to echo server, we get Nagle'd and delay ACK'd
menkar sending 2k packets to echo server on whisper

39.975513 MENKAR.2319 > whisper.8989: . 1:1461(1460) ack 1 win 8192

39.975562 whisper.8989 > MENKAR.2319: . ack 1461 win 30660 (DF)

39.976000 MENKAR.2319 > whisper.8989: P 1461:2001(540) ack 1 win 8192

39.978696 whisper.8989 > MENKAR.2319: . 1:1461(1460) ack 2001 win 32120 (D

40.178545 MENKAR.2319 > whisper.8989: . ack 1461 win 8192

40.178591 whisper.8989 > MENKAR.2319: P 1461:2001(540) ack 2001 win 32120

40.183020 MENKAR.2319 > whisper.8989: . 2001:3461(1460) ack 2001 win 8192

40.183134 whisper.8989 > MENKAR.2319: P 2001:3461(1460) ack 3461 win 32120

40.183507 MENKAR.2319 > whisper.8989: P 3461:4001(540) ack 2001 win 8192

40.194201 whisper.8989 > MENKAR.2319: . ack 4001 win 32120 (DF)

40.378562 MENKAR.2319 > whisper.8989: . ack 3461 win 8192

40.378596 whisper.8989 > MENKAR.2319: P 3461:4001(540) ack 4001 win 32120

40.383012 MENKAR.2319 > whisper.8989: . 4001:5461(1460) ack 4001 win 8192

40.383118 whisper.8989 > MENKAR.2319: P 4001:5461(1460) ack 5461 win 32120

40.383501 MENKAR.2319 > whisper.8989: P 5461:6001(540) ack 4001 win 8192

40.394205 whisper.8989 > MENKAR.2319: . ack 6001 win 32120 (DF)

2KBytes every .2 seconds

TCP_NODELAY on server would fix it

200 ms, whisper doesn’t want to send just 540 bytes, menkar is delaying ACK

IPP Lecture 10 - 20

TCP debugging

netstat –s
Tcp:

1079 active connections openings
1433 passive connection openings
0 failed connection attempts
13 connection resets received
2 connections established
49209819 segments received
97764784 segments send out
149 segments retransmited
0 bad segments received.
297 resets sent

…. Plus a bunch more “extended” status info

SO_DEBUG socket option
– Some kernels will trace TCP events for a socket (Solaris, not

linux)
– Use trpt to examine trace buffer (small, circular)
– Include TCP states
– Some TCP clients (telnet, ftp) support “debug”

IPP Lecture 10 - 21

TCP trace of ttcp over 100 mbs FDDI
FDDI (MTU 4352) ttcp (1K) between two Sun's -- slow???
sender's trace. sender window 2K, receiver window 8k

0.36 SYN_SENT:output [677d2a00..677d2a04)@0(win=1000)<SYN> -> SYN_SENT

0.36 SYN_SENT:input 2e93d400@677d2a01(win=1000)<SYN,ACK> -> ESTABLISHED

0.36 E:output 677d2a01@2e93d401(win=1000)<ACK> -> ESTABLISHED

0.37 E:output [677d2a01..677d2e01)@2e93d401(win=1000)<ACK,PUSH> -> ESTABLISHED

0.37 E:output [677d2e01..677d3601)@2e93d401(win=1000)<ACK,PUSH> -> ESTABLISHED

0.37 E:input 2e93d401@677d2e01(win=8000)<ACK> -> ESTABLISHED

0.54 E:input 2e93d401@677d3601(win=8000)<ACK> -> ESTABLISHED

0.54 E:output [677d3601..677d3e01)@2e93d401(win=1000)<ACK,PUSH> -> ESTABLISHED

0.74 E:input 2e93d401@677d3e01(win=8000)<ACK> -> ESTABLISHED

0.74 E:output [677d3e01..677d4601)@2e93d401(win=1000)<ACK,PUSH> -> ESTABLISHED

0.94 E:input 2e93d401@677d4601(win=8000)<ACK> -> ESTABLISHED

0.94 E:output [677d4601..677d4e01)@2e93d401(win=1000)<ACK,PUSH> -> ESTABLISHED

If the sender's window size is less than 2*MSS, the receiver will delay
after every data packet (waiting for a 2nd full-sized segment -- which is
not going to arrive). 2KB/200ms = 80kbs Delayed ACK effect

TCP state info

IPP Lecture 10 - 22

TCP keepalive
Not part of RFC spec

Idle TCP connection exchanges no data, could sit forever
– Intervening routers/link could go up/down, as long as end hosts don’t crash

Some applications want to know if the other end is still there
– Might need this to free up resources associated with connection
– Could do this with application packets
– Most OS’s TCP provide keepalive option SO_KEEPALIVE

TCP will send a packet every 2 hours on idle connection
Sequence number one less than next sequence number and no data
Receiver should just ACK it
If packet is lost (after normal retries), connection is closed and application is
informed (error in read/write/select)

Controversy
– Can cause perfectly good connections to be dropped during transient failures
– Consume unnecessary bandwidth

IPP Lecture 10 - 23

TCP timers & timeouts

connect timeout: 75s

delayed-ACK timeout: 200ms

keepalive: 2 hr+

retransmit: 3-5+ minutes

close wait: 30s (2MSL)

0-window persist: forever @ 60s

IP fragment assembly: 30s

TCP uses a 200ms and 500ms timer to manage the various timeouts.
– Every 500 ms, check for packet timeouts, bump tick count
– RTT estimator uses tick count from 500 ms timer
– Timestamp is current tick count
– Every 200 ms, see if any delayed ACKs need to be transmitted
– Faster timer (100 ms) can improve TCP performance when there are timeouts
– Newer OS’s have replaced 500 ms timer with 100 ms timer

IPP Lecture 10 - 24

Timer granularity

•Two competing TCP Reno flows with timeouts (ns simulation).

• higher resolution timer allows timeout to be detected “sooner”

•Check every 100 ms rather than every 500 ms

•Throughput: 816 kbs with 100 ms timer, 486 kbs with 500 ms timer

IPP Lecture 10 - 25

TCP socket options

SO_RCVBUF SO_SNDBUF socket buffers (performance enhancers)

SO_LINGER change close behavior

SO_REUSEADDR avoid "port in use", TIME_WAIT

TCP_NODELAY disable Nagle

SO_KEEPALIVE 2hr idle check

SO_DEBUG enable kernel trace

IPP Lecture 10 - 26

TCP protocol 1984

TCP as defined by RFC 793
– Sliding window flow control

Keeps sender from over-running receiver
Limits max sending rate

– Simple RTT estimation used for timeout
– ACK for in-order packets received plus cumulative ACK

Doesn’t require receiver buffer out of order packets
Sender may have to go-back-N if a packet is lost

– Timer for detecting lost packet and doing retransmission

Sender blasts initial window of packets

ACK clocking adapts flow to available and changing bandwidth

IPP Lecture 10 - 27

Packet loss

Packet loss from bit errors on media
– Random
– Each media has a defined bit-error rate
– Often link layer recovers (e.g., CSMA/CD collision detect, retransmit)
– Media loss can be bursty, but bit-loss usually contained within a packet
– No need to adjust sending rate

Packet loss due to congestion
– Classic queuing theory

Arrival rates faster than service rates
Queues grow

– RTT increases (response degrades)
– Throughput (goodput) decreases

– Finite queues at routers overflow, packets are dropped
Queues typically FIFO (droptail)

– Sender should reduce sending rate until (?) congestion subsides

IPP Lecture 10 - 28

congestion

informally: “too many sources sending too much data too fast for
network to handle”

manifestations:
– lost packets (buffer overflow at routers)
– long delays (queueing in router buffers)

Congestion control: providing feedback to sender to control
sending rate

– different from flow control! (too fast for receiver too handle)

IPP Lecture 10 - 29

ACK clocking example (no losses)

‘83 TCP (RFC 793) did initial blast of window of packets, and timeout
and go-back-N for packet loss

Initial window blast builds up queue, then runs at link speed (200kbs)

20 packets in queue adds to RTT ANIMATION

IPP Lecture 10 - 30

TCP response to congestion in 1984

self-clocking example but now with a queue size of 10

nam cc84.nam

Sender blasts 20 packets, overflows queue, dropped packets, timeout
and retransmission, eventually resulting in another blast!

Data rate (goodput) drops to 48 Kbs (out of 200 Kbs)

Some retransmitted packets were already at receiver, so sender
response adds to congestion (unneeded packets)

3 2 1 0
1 mbs

10 ms

1 mbs

10 ms

0,2 mbs

40 ms

Queue size:
10 pkts

window size:
20 pkts

IPP Lecture 10 - 31

Queue size of 10 window of 20 (old TCP)

20 packet burst overflows router queue, drops (dup ACKs)

Some packets made it, and their ACKs release additional packets

Timeout, retransmit at 1.9, ACK’d and go-back-N blast

More drops, some packets are making it to receiver, but sent again

Goodput 48 kbs, but lots of wasted bandwidth IPP Lecture 10 - 32

TCP congestion avoidance (1984)
RFC 896 (1984) noted performance problems with growing Internet

1) Excess of small packets (inefficient)
– Silly window syndrome (Nagle fix)
– Too many ACKs (delayed ACK fix)

2) congestion collapse
– Interaction of reliable TCP on top of unreliable IP
– Problems at routers connecting links of widely different bandwidths
– Queues grow and overflow
– Senders are retransmitting but not adjusting sending rate, so problem

worsens
– Little new data getting through … congestion collapse

Congestion fix (’84):
– Routers send ICMP source quench when queues start to build

This is congestion avoidance
– When TCP sender receives a source quench, set “effective window” to zero

for 10 ACKs or so … briefly backoff?
– Source quench still allows ACKs and retransmissions

IPP Lecture 10 - 33

TCP congestion 1988
The 1984 “recommendations” helped some …

Problems
– Traffic bursty – sudden build up of queues and RTT
– Not all routers would send ICMP source quench
– Not all senders would respond to source quench with rate reduction
– At time of congestion when things are real “busy”, the router is supposed to

figure out who the big senders are and send ‘em ICMP messages
Takes time away from forwarding operation (draining queue)
Actually injects MORE packets into the network

October ’86 (Van Jacobson)
– Data rate between Internet sites LBL and UC Berkeley (400 yards) dropped

by a factor of 1000! Congestion collapse was back.
– Recommendations (and implemented in 4.3 BSD)

Better RTT variance estimation and thence better timeout value
Exponential backoff for retransmit timer
Slow-start
Congestion control (cwnd and ssthresh)

– Based on packet loss (not congestion avoidance) IPP Lecture 10 - 34

TCP slow-start

Rather than blasting an initial window of packets, increase sending rate
exponentially up to window size

– Network friendly
– A form of congestion control
– Goal: get ACK clock running

Sender sends one packet, when ACK arrives send next two packets

As each ACK arrives, send two more packets

sending rate doubles each RTT

For long running flows, this will have little effect on performance

For short flows (a few data packets), performance (response,
throughput) may be noticably reduced (almost stop and wait)

Use slow-start when ACK clocking lost
– Startup
– Timeout (or 3 dup ACKs – later)
– Idle (no packets in flight for RTO seconds)

IPP Lecture 10 - 35

Slow-start examples
Flows with longer RTT will take longer to ramp up

Delayed ACK algorithm makes slow-start even slower
– ACK every other packet (Linux turns off del ACK during slow-start)
– Studies use “byte counting” rather than ACK counting

To reach window size of N segments, takes log2(N) RTT’s

N = 1500

log2 (N) = 11

11 RTTs

If RTT=160ms then
1.76 seconds

IPP Lecture 10 - 36

Slow-start effect on throughput

Not a problem for LANs (tiny RTT)
– 4.3 BSD Tahoe only did slow-start if destination was not on local subnet

For long RTT (and delayed ACK) and high speed link, can take a while to
reach full bandwidth (example: 160 ms RTT, 100 mbs)

IPP Lecture 10 - 37

Slow-start after packet loss

Packet lost

TCP retransmits lost packet

Enters slow-start

IPP Lecture 10 - 38

Slow-start after idle
Flow can go idle due to application pauses in writing/reading data

If no unACK’d packets (nothing in flight) for more than RTO seconds,
TCP has lost ACK clocking, enter slow-start (don’t blast a windows
worth of data!)

Application pauses …
Resumes, adv. window
opens, slow-start

IPP Lecture 10 - 39

Next time …

TCP congestion control

TCP Tahoe

