
Internet Programming & Protocols
Lecture 9

TCP bandwidth-delay and Long Fat Pipes

Performance tools

IPP Lecture 9 - 2

Bandwidth-delay product
z Maximum bandwidth of TCP connection is

min(receiver’s RCVBUF, sender’s SNDBUF) / RTT

z Given RTT and bottle-neck link speed, calculate the TCP buffer space
needed to fill the pipe by multiplying bandwidth x delay

– RTT = 100 ms, bandwidth = 45 mbsÎ 45x106 x 0.1 Æ 4.5 Mb buffers
– RTT = 100 ms, bandwidth = 100 mbsÆ need 1.2 MBytes buffers
– RTT = 100 ms, bandwidth = 1 GbsÆ need 12 Mbytes buffers
– Or given your OS has default buffer size of 64 Kbytes and RTT 100 ms,

then your TCP connection will go no faster than 64K/0.1 = 640 KBs or
5 mbs /

z For your own client/server you could have a setsockopt() to set buffer
sizes, but if your client (e.g., browser) is talking to a server that you
have no control over, then you are bounded by server’s buffer sizes

z Each socket has its own SNDBUF/RCVBUF, default size has grown
over the years (16KB, 32KB, 64KB) – check your OS! OK for LAN

z Too small a buffer size limits throughput, too big consumes system
resources and possibly adds to congestion and delay

IPP Lecture 9 - 3

Long fat pipes

z Evolution to high speed links and NIC (gigabit and higher) over long
delay paths has created some problems for TCP

– Window size in TCP header is only 16 bits (65,535) but
z RTT = 100 ms, bandwidth = 100 mbsÆ need 1.2 MBytes buffers

– 32-bit sequence numbers can wrap (ambiguous packet numbers?)

– Huge amount of data “in flight”, loss recovery problematic
z Need more info about missing packets (SACK … later)

z RFC 1323 -- extensions for high performance (’92)

Network link speed time to wrap
ARPANET 56kbs 3.6 days

DS1 1.5mbs 3 hours
DS3 45 mbs 380 s

100T 100 mbs 170 s

GigE 1 gbs 17 s

OC192 10 gbs 1.7s

IPP Lecture 9 - 4

Window scale TCP option

z For windows bigger than 64KB, TCP option in SYN packet can set a
“scale” factor for window field

z Both hosts must support window scaling (SYN-ACK carries window
scale info for other end)

z 3-byte TCP option (type=3, lth=3, scale)
– Scale value (left shift) from 0 to 14, so up to 1 GigaByte window

z TCP “remembers” scale factor in socket data structure
160.91.212.75.34243 > 160.36.58.221.5001: S 2370639492:2370 639492(0) win 5840

<mss 1460,sackOK,timestamp 2737600957 0,nop,wscale 8>

0x0000: 4500 003c 6f39 4000 4006 7bda a05b d44b E..<o9@.@.{..[.K

0x0010: a024 3add 85c3 1389 8d4d 1684 0000 0000 .$:......M......

0x0020: a002 16d0 877e 0000 0204 05b4 0402 080a~..........

0x0030: a32c 79bd 0000 0000 0103 0308 .,y.........

160.36.58.221.5001 > 160.91.212.75.34243: S 3684589243:3684 589243(0) ack
2370639493 win 5792 <mss 1460,sackOK,timestamp 237253051 273760095
7,nop,wscale 7>

0x0000: 4500 003c 0000 4000 3a06 f113 a024 3add E..<..@.:....$:.

0x0010: a05b d44b 1389 85c3 db9e 5ebb 8d4d 1685 .[.K......^..M..

0x0020: a012 16a0 0d65 0000 0204 05b4 0402 080ae..........

0x0030: 0e24 31bb a32c 79bd 0103 0307 .$1..,y.....

Tc
pt

ra
ce

no
te

: y
ou

 h
av

e
to

 s
ee

 S
YN

 p
ac

ke
ts

 to
 k

no
w

 h
ow

to

 in
te

rp
re

t w
in

do
w

 fi
el

d

IPP Lecture 9 - 5

TCP timestamp option

z TCP option to include 32-bit time stamp in every packet (+12 bytes)

z Return ACK carries original time stamp (plus receiver’s time stamp)

z Value is usually tick counter of TCP’s 500 ms timer (100 ms newer OS)

z (type=8, length=10, myval, yourval)

z Timestamp can be “prepended” to sequence number for PAWS
(prevention against wrapped sequence number 232 Æ 264) and help
RTT estimates -- mostly a “reliability” extension

160.91.212.75.34243 > 160.36.58.221.5001: S 2370639492:2370 639492(0) win 5840
<mss 1460,sackOK, timestamp 2737600957 0, nop,wscale 8>

0x0000: 4500 003c 6f39 4000 4006 7bda a05b d44b E..<o9@.@.{..[.K

0x0010: a024 3add 85c3 1389 8d4d 1684 0000 0000 .$:......M......

0x0020: a002 16d0 877e 0000 0204 05b4 0402 080a~..........

0x0030: a32c 79bd 0000 0000 0103 0308 .,y.........

160.36.58.221.5001 > 160.91.212.75.34243: S 3684589243:3684 589243(0) ack
2370639493 win 5792 <mss 1460,sackOK, timestamp 237253051 2737600957,
nop,wscale 7>

0x0000: 4500 003c 0000 4000 3a06 f113 a024 3add E..<..@.:....$:.

0x0010: a05b d44b 1389 85c3 db9e 5ebb 8d4d 1685 .[.K......^..M..

0x0020: a012 16a0 0d65 0000 0204 05b4 0402 080ae..........

0x0030: 0e24 31bb a32c 79bd 0103 0307 .$1..,y.....

IPP Lecture 9 - 6

OS tuning for high performance TCP

z Your OS may be configured to be network-challenged
– Doesn’t support RFC 1323 extensions
– Limits max size of SNDBUF and RCVBUF

z System manager may be able to fix these things
z Incantations vary by OS and major release
z Configuration options to

– Enable RFC 1323
– Set default SNDBUF/RCVBUF (don’t mess with this probably)
– Set max limits for SNDBUF/RCVBUF setsockopt()
– Enable path MTU discovery
– Tweak MTU (careful)

z See OS tuning web sites

z You may have no control of the target host… sigh
– Though with tcpdump you can observe its window size and RFC 1323

options
– Some applications may be “network-aware” and have tuning options

Option usage
MSS 99%
Window scale 15%
SACK 79%
Timestamp 13%

IPP Lecture 9 - 7

OS tuning incantations

z FreeBSD max buffer size sysctl -w kern.maxsockbuf=524288

z Linux
echo 1 > /proc/sys/net/ipv4/tcp_timestamps
echo 1 > /proc/sys/net/ipv4/tcp_window_scaling
echo 1 > /proc/sys/net/ipv4/tcp_sack
echo 8388608 > /proc/sys/net/core/wmem_max
echo 8388608 > /proc/sys/net/core/rmem_max
echo "4096 87380 4194304" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 65536 4194304" > /proc/sys/net/ipv4/tcp_wmem

z Windows XP registry
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

GlobalMaxTcpWindowSize="256960"

Tcp1323Opts="1"

z See PSC tuning table

IPP Lecture 9 - 8

Concept Collection

z ACK/NAK cumulative ACK
z Bandwidth-delay product
z Best effort
z Bit error rate
z Checksums
z Client/server/concurrent/iterative
z CIDR
z CSMA/CD
z Datagram vs reliable stream
z Exponential backoff
z Flow control
z fragmentation

z Layers/encapsulation
z Maximum segment lifetime(MSL)
z MTU MSS/MTU discovery
z Network mask
z Packet switching vs circuit-based
z promiscuous
z Routing
z RTT
z Self-clocking
z Sliding window
z Subnets/supernets
z Switch vs hub
z TTL

IPP Lecture 9 - 9

Measuring network performance

z If you are a network administrator, you’re probably interested in overall
utilization, traffic patterns, and trends, e.g. for capacity planning

– Visual tools, alarms etc. (commercial network analyzers/managers)

z If you are building network applications, you may want to observe your
application’s traffic and competing traffic.

z If you are a network protocol designer, you may want to see the
contents of every packet in your protocol

z If you are experiencing “poor network” performance you may want tools
to monitor and probe the network paths and monitor the effects of your
TCP tuning

z Network metrics include utilization, bandwidth, latency, jitter, losses

z Measurements tasks
– Data collection
– Analysis
– Presentation
– interpretation IPP Lecture 9 - 10

Network measurement tools

z Monitoring tools (passive)
– Cisco netflows
– tcpstat
– tcpdump/tcptrace/xplot

z Benchmarking tools (active)
– ttcp
– iperf
– netperf
– DBS

z These are freely available on web

IPP Lecture 9 - 11

Cisco netflow

z Router can collect statistics on each flow
– src, src port, dst, dst port, proto, packets, bytes, duration, int. in, int. out
– Router spits these records out via UDP to a collector host
– Tools/scripts for summarizing and graphing

z NOC tool and some use for intrusion detection
– See Internet2 NOC data fastest flows, fattest flows, etc.

proto/port usage
internet2
TCP 87%

UDP 13%

iperf 21%

http 13%

nntp 11%

ftp 3%

shoutcast 3% IPP Lecture 9 - 12

tcpstat

z Passive tool based on libpcap (like tcpdump)
– Can collect direct from NIC (root acces) or from a tcpdump file

z Periodically reports flow summaries, pkts/proto/sec

z Example
– tcpstat –r rawdata.dmp –o “%r %A %T %U %l %b\n” > tom.log
– Ascii records: timestamp # ARP #TCP #UDP netload bits/sec
– Use gnuplot to parse and plot

Lots of graphical tools to display
current network traffic real-time.

IPP Lecture 9 - 13

tcptrace and xplot

z Statistics and graphs on individual TCP flow from tcpdump file

z Graphs can be very handy in visualizing TCP/path problems
– View with xplot
– Bandwidth vs time (instantaneous and average)
– RTT vs time
– Sequence/ACK vs time

z advertised window
z loss, timeout
z SACK
z retransmission

– Window vs time

z View differs whether tcpdump was running at sender or receiver side
– Best to do tcpdump on sender side, most of the TCP control happens at

sender side

z ~dunigan/ipp05/bin/ try it, you’ll like it. ☺

IPP Lecture 9 - 14

Sequence number vs time plot

z Collect a tcpdump file of your network application

z tcptrace –G –zxy –y –T –A100 file.dmp

z Generates a bunch of *.xpl files
– a2b_rtt.xpl a2b_tsg.xpl a2b_tput.xpl

z xplot a2b_tsg.xpl
– Plots sequence number vs time
– Slope of line is datarate
– Bumps in line are loss events or app. pauses
– Can zoom in with mouse “box”
– Zoom back out with left mouse click
– Can get postscript plots

IPP Lecture 9 - 15

xplot of TCP startup

z Zoom in on lower left

z Green line “last ack’d”

z White dots, pkts transmitted

z Yellow: recvr window +
ACK ticks

z Distance between green
and yellow is available
window

z Distance between steps is
RTT

z Observe cumulative ACK

z Y-axis is Bytes

z TCP slow-start in action

IPP Lecture 9 - 16

RTT xplot

z RTT (ms) vs time

z A bit of jitter from queuing
delays

z Often you will see RTT
grow just before a packet
is lost

IPP Lecture 9 - 17

xplot of throughput

z Red is instantaneous data rate

z Blue is average data rate
– End-point of blue is what app.

reports as the data rate

z Ramp up due to slow-start

IPP Lecture 9 - 18

Timeline graph

IPP Lecture 9 - 19

tcptrace flow summary tcptrace –rl file.dmp
a->b: b->a:

total packets: 12534 total packets: 7616
ack pkts sent: 12533 ack pkts sent: 7616
pure acks sent: 2 pure acks sent: 7614
unique bytes sent: 18144208 unique bytes sent: 0
actual data pkts: 12531 actual data pkts: 0
actual data bytes: 18144208 actual data bytes: 0
rexmt data pkts: 0 rexmt data pkts: 0
rexmt data bytes: 0 rexmt data bytes: 0
outoforder pkts: 0 outoforder pkts: 0
pushed data pkts: 15 pushed data pkts: 0
SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
adv wind scale: 8 adv wind scale: 7
req sack: Y req sack: Y
throughput: 801108 Bps throughput: 0 Bps

RTT samples: 7569 RTT samples: 2
RTT min: 160.8 ms RTT min: 0.0 ms
RTT max: 273.2 ms RTT max: 0.0 ms
RTT avg: 168.0 ms RTT avg: 0.0 ms
RTT stdev: 16.9 ms RTT stdev: 0.0 ms

IPP Lecture 9 - 20

xplot diagnosis – buffer limited

SNDBUF
limited / RCVBUF

limited /

NIC or path bandwidth limited

IPP Lecture 9 - 21

xplot lost packets diagnosis (cable modem limiter)

Numerous loss events as
cable box drops packets to
limit bandwidth

RTT grows as queue builds
at modem box – input rate is
higher than customer’s limit
rate.

IPP Lecture 9 - 22

Cable tests

Bandwidth clamping at 4 mbs

but average throughput 3.5 mbs Loss event
ACK’s stop advancing
purple SACK blocks
green 3 dup
red R retransmits
available window closes

IPP Lecture 9 - 23

Receiver application pauses… then resumes reading

Application pauses for
several seconds.
Purple Z is sender
doing window probes.

Receive window goes to 0 Application starts
reading data again and
window is re-opened,
but TCP slow-starts,
ACK clocking has been
lost / In the old days,
blast window packets!

IPP Lecture 9 - 24

Sender application pauses
z interactive, query/response applications will not have high data rates

– Sender or receiver goes idle

z Example, client requesting 8K records, wait for data, request next 8k
– Better batch or pipeline requests, e.g., newer http protocols
– xplot looks like SNDBUF limited

z Our main interest will be sustaining high throughput

IPP Lecture 9 - 25

Network measurement tools

z Monitoring tools (passive)
– Cisco netflows
– tcpstat
– tcpdump/tcptrace/xplot

z Benchmarking tools (active)
– ttcp
– iperf
– netperf
– DBS

z These are freely available on web

IPP Lecture 9 - 26

ttcp

z Simple command line thoughput test (ttcp.c)

z Specify port, SND/RCVBUF sizes, record size, number of records

z Input/out can be from/to “sink” (-s) or stdin/stdout (compressed file)
– Good for links with compression. ttcp –t target.host < file.tgz -- Careful

you may be measuring I/O performance instead of network performance.

z Start receiver ttcp –r –s –b 2000000

z Then start sender ttcp –t –s –b 2000000 target.host.ugh
– Defaults: port 5001, 2K record size, 8K records

z UDP option (ttcp –t –s –u), sender just blasts, receiver should report
goodput (ttcp –r –s –u)

z No “duration”, control with number of records (-n)

z Single-shot, restart to do another test

IPP Lecture 9 - 27

ttcp
Usage: ttcp -t [-options] host [< in]

ttcp -r [-options > out]
Common options:

-l ## length of bufs read from or written to network (default 8192)
-u use UDP instead of TCP
-p ## port number to send to or listen at (default 5001)
-s -t: source a pattern to network

-r: sink (discard) all data from network
-A align the start of buffers to this modulus (default 16384)
-O start buffers at this offset from the modulus (default 0)
-v verbose: print more statistics
-d set SO_DEBUG socket option
-b ## set socket buffer size (if supported)
-f X format for rate: k,K = kilo{bit,byte}; m,M = mega; g,G = giga

Options specific to -t:
-n## number of source bufs written to network (default 2048)
-D don't buffer TCP writes (sets TCP_NODELAY socket option)

Options specific to -r:
-B for -s, only output full blocks as specified by -l (for TAR)
-T "touch": access each byte as it's read

ttcp -r -s
ttcp-r: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
ttcp-r: socket
ttcp-r: accept from 160.36.58.221
ttcp-r: 16777216 bytes in 1.62 real seconds = 10125.66 KB/sec +++

ttcp -t -s wisp.csm.ornl.gov
ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp ->
wisp.csm.ornl.gov
ttcp-t: socket
ttcp-t: connect
ttcp-t: 16777216 bytes in 1.27 real seconds = 12871.61 KB/sec +++

IPP Lecture 9 - 28

iperf

z Command line with persistent server

z Options for buffer size, record size, duration, UDP/TCP, parallel
streams, interval status reports

z Sometimes hard to compile (C++)

z Start the server iperf –s –w 2m

z Start the client iperf –w 2m –c target.host
– Defaults: port 5001, 10 second test, 8 KB record size

z UDP has rate option (-b) iperf –u –b 8m –c target.host
– Good for friendly probe of available bandwidth
– Reports losses, dups, out of order

IPP Lecture 9 - 29

Iperf TCP example

iperf -w 2m -c whisper
--
Client connecting to whisper, TCP port 5001
TCP window size: 4.0 MByte (WARNING: requested 2.0 MByte)
--
[3] local 160.91.212.75 port 34347 connected with 160.36.58.221 port
5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.3 sec 113 MBytes 92.1 Mbits/sec

iperf -s -w 2m
--
Server listening on TCP port 5001
TCP window size: 4.0 MByte (WARNING: requested 2.0 MByte)
--
[6] local 160.36.58.221 port 5001 connected with 160.91.212.75 port
34347
[ID] Interval Transfer Bandwidth
[6] 0.0-10.2 sec 113 MBytes 92.3 Mbits/sec

IPP Lecture 9 - 30

Iperf UDP example
iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 KByte (default)
--
[3] local 192.168.1.4 port 5001 connected with 160.36.58.221 port 33113
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 7.50 MBytes 6.29 Mbits/sec 0.703 ms 1/ 5352 (0.019%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order
[4] local 192.168.1.4 port 5001 connected with 160.36.58.221 port 33114
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[4] 0.0-10.0 sec 7.50 MBytes 6.29 Mbits/sec 0.427 ms 3/ 5352 (0.056%)

iperf -u -b 6m -i 1 -c catv
--
Client connecting to catv, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 64.0 KByte (default)
--
[3] local 160.36.58.221 port 33114 connected with 69.252.162.198 port 5001
[ID] Interval Transfer Bandwidth
[3] -0.0- 1.0 sec 771 KBytes 6.3 Mbits/sec
[3] 1.0- 2.0 sec 768 KBytes 6.3 Mbits/sec
[3] 0.0-10.0 sec 7.5 MBytes 6.3 Mbits/sec
…
[3] Sent 5352 datagrams

recall our TCP cable test
only got 3.4 mbs

IPP Lecture 9 - 31

netperf

z Advantage: persistent netserver
– Client uses a “control” TCP connection to configure server receiver

z Set buff sizes, write size, duration, anti-compression option
– Server spawns off receiver process (can’t spawn a transmitter /)
– Results from server returned over control socket

z Server: netserver –p 12865

z Client: netperf -H server.host -- -m 8192 -M 8192 -s 100000 -S 100000

IPP Lecture 9 - 32

DBS

Distributed Benchmark System

z Can evaluate multiple TCP sessions in parallel on multiple hosts

z Besides data rate, can evaluate interactions of flows
– Fairness
– Loss/recovery
– Delay/jitter

z Controlled by a command file
– Test commands and parameters for each host
– When to start, what to do,

z Daemon processes (dbsd) running on participating hosts

z Client machine drives tests from command file via dbsc command

z Results collected to disk files

z dbs_view used to display graphs and charts of tests

IPP Lecture 9 - 33

DBS

IPP Lecture 9 - 34

Browser-based testers

z Lots of browser-based tools for evaluating your OS configuration and
testing bandwidth inbound and outbound

z http://whisper.cs.utk.edu:7123/

Also down-loadable tools for “tuning” your network parameters – careful.

IPP Lecture 9 - 35

Selecting the right tool

z Probably use monitoring tools in conjunction with bandwidth testers
– tcpdump/tcptrace/xplot

z iperf is most popular today

z Use multiple pairs of hosts to induce packet loss (send a blast of UDP)

z Test environments
– standalone testbed
– Testbed with emulator

z Introduce loss and delay
z NISTnet or dummynet … later

– Test on the Internet
z Unsure of background traffic

– Know how the test nodes’ OS TCP parameters are configured
– Be “friendly”

z There are oodles of free network test tools!

IPP Lecture 9 - 36

Our tool set

z ping/traceroute

z ifconfig/netstat

z strace

z lsof

z dig

z ethereal tcpdump/tcptrace/xplot

z ttcp/iperf/netperf

IPP Lecture 9 - 37

Things that slow TCP down

z SNDBUF limits

z RCVBUF limits

z NIC speed or bottleneck link speed

z Packet loss

z Application “protocol”

z For more info on using tcpdump/tcptrace/xplot see NLANR page on
TCP debugging

z Web100 project (instrumented Linux kernel) provides additional TCP
flow monitoring

IPP Lecture 9 - 38

Next time …

z TCP RTT estimation

z Tiny packets – delayed ACKs, Nagle, silly windows

z TCP timers

z TCP slow-start

assignment 4 and 5

