
Internet Programming & Protocols
Lecture 9

TCP bandwidth-delay and Long Fat Pipes

Performance tools

IPP Lecture 9 - 2

Bandwidth-delay product
Maximum bandwidth of TCP connection is

min(receiver’s RCVBUF, sender’s SNDBUF) / RTT

Given RTT and bottle-neck link speed, calculate the TCP buffer space
needed to fill the pipe by multiplying bandwidth x delay

– RTT = 100 ms, bandwidth = 45 mbs 45x106 x 0.1 4.5 Mb buffers
– RTT = 100 ms, bandwidth = 100 mbs need 1.2 MBytes buffers
– RTT = 100 ms, bandwidth = 1 Gbs need 12 Mbytes buffers
– Or given your OS has default buffer size of 64 Kbytes and RTT 100 ms,

then your TCP connection will go no faster than 64K/0.1 = 640 KBs or
5 mbs

For your own client/server you could have a setsockopt() to set buffer
sizes, but if your client (e.g., browser) is talking to a server that you
have no control over, then you are bounded by server’s buffer sizes

Each socket has its own SNDBUF/RCVBUF, default size has grown
over the years (16KB, 32KB, 64KB) – check your OS! OK for LAN

Too small a buffer size limits throughput, too big consumes system
resources and possibly adds to congestion and delay

IPP Lecture 9 - 3

Long fat pipes

Evolution to high speed links and NIC (gigabit and higher) over long
delay paths has created some problems for TCP

– Window size in TCP header is only 16 bits (65,535) but
RTT = 100 ms, bandwidth = 100 mbs need 1.2 MBytes buffers

– 32-bit sequence numbers can wrap (ambiguous packet numbers?)

– Huge amount of data “in flight”, loss recovery problematic
Need more info about missing packets (SACK … later)

RFC 1323 -- extensions for high performance (’92)

Network link speed time to wrap
ARPANET 56kbs 3.6 days

DS1 1.5mbs 3 hours
DS3 45 mbs 380 s

100T 100 mbs 170 s

GigE 1 gbs 17 s

OC192 10 gbs 1.7s

IPP Lecture 9 - 4

Window scale TCP option

For windows bigger than 64KB, TCP option in SYN packet can set a
“scale” factor for window field

Both hosts must support window scaling (SYN-ACK carries window
scale info for other end)

3-byte TCP option (type=3, lth=3, scale)
– Scale value (left shift) from 0 to 14, so up to 1 GigaByte window

TCP “remembers” scale factor in socket data structure
160.91.212.75.34243 > 160.36.58.221.5001: S 2370639492:2370 639492(0) win 5840

<mss 1460,sackOK,timestamp 2737600957 0,nop,wscale 8>

0x0000: 4500 003c 6f39 4000 4006 7bda a05b d44b E..<o9@.@.{..[.K

0x0010: a024 3add 85c3 1389 8d4d 1684 0000 0000 .$:......M......

0x0020: a002 16d0 877e 0000 0204 05b4 0402 080a~..........

0x0030: a32c 79bd 0000 0000 0103 0308 .,y.........

160.36.58.221.5001 > 160.91.212.75.34243: S 3684589243:3684 589243(0) ack
2370639493 win 5792 <mss 1460,sackOK,timestamp 237253051 273760095
7,nop,wscale 7>

0x0000: 4500 003c 0000 4000 3a06 f113 a024 3add E..<..@.:....$:.

0x0010: a05b d44b 1389 85c3 db9e 5ebb 8d4d 1685 .[.K......^..M..

0x0020: a012 16a0 0d65 0000 0204 05b4 0402 080ae..........

0x0030: 0e24 31bb a32c 79bd 0103 0307 .$1..,y.....

Tc
pt

ra
ce

no
te

: y
ou

 h
av

e
to

 s
ee

 S
YN

 p
ac

ke
ts

 to
 k

no
w

 h
ow

to

 in
te

rp
re

t w
in

do
w

 fi
el

d

IPP Lecture 9 - 5

TCP timestamp option

TCP option to include 32-bit time stamp in every packet (+12 bytes)

Return ACK carries original time stamp (plus receiver’s time stamp)

Value is usually tick counter of TCP’s 500 ms timer (100 ms newer OS)

(type=8, length=10, myval, yourval)

Timestamp can be “prepended” to sequence number for PAWS
(prevention against wrapped sequence number 232 264) and help
RTT estimates -- mostly a “reliability” extension

160.91.212.75.34243 > 160.36.58.221.5001: S 2370639492:2370 639492(0) win 5840
<mss 1460,sackOK, timestamp 2737600957 0, nop,wscale 8>

0x0000: 4500 003c 6f39 4000 4006 7bda a05b d44b E..<o9@.@.{..[.K

0x0010: a024 3add 85c3 1389 8d4d 1684 0000 0000 .$:......M......

0x0020: a002 16d0 877e 0000 0204 05b4 0402 080a~..........

0x0030: a32c 79bd 0000 0000 0103 0308 .,y.........

160.36.58.221.5001 > 160.91.212.75.34243: S 3684589243:3684 589243(0) ack
2370639493 win 5792 <mss 1460,sackOK, timestamp 237253051 2737600957,
nop,wscale 7>

0x0000: 4500 003c 0000 4000 3a06 f113 a024 3add E..<..@.:....$:.

0x0010: a05b d44b 1389 85c3 db9e 5ebb 8d4d 1685 .[.K......^..M..

0x0020: a012 16a0 0d65 0000 0204 05b4 0402 080ae..........

0x0030: 0e24 31bb a32c 79bd 0103 0307 .$1..,y.....

IPP Lecture 9 - 6

OS tuning for high performance TCP

Your OS may be configured to be network-challenged
– Doesn’t support RFC 1323 extensions
– Limits max size of SNDBUF and RCVBUF

System manager may be able to fix these things
Incantations vary by OS and major release
Configuration options to

– Enable RFC 1323
– Set default SNDBUF/RCVBUF (don’t mess with this probably)
– Set max limits for SNDBUF/RCVBUF setsockopt()
– Enable path MTU discovery
– Tweak MTU (careful)

See OS tuning web sites

You may have no control of the target host… sigh
– Though with tcpdump you can observe its window size and RFC 1323

options
– Some applications may be “network-aware” and have tuning options

Option usage
MSS 99%
Window scale 15%
SACK 79%
Timestamp 13%

IPP Lecture 9 - 7

OS tuning incantations

FreeBSD max buffer size sysctl -w kern.maxsockbuf=524288

Linux
echo 1 > /proc/sys/net/ipv4/tcp_timestamps
echo 1 > /proc/sys/net/ipv4/tcp_window_scaling
echo 1 > /proc/sys/net/ipv4/tcp_sack
echo 8388608 > /proc/sys/net/core/wmem_max
echo 8388608 > /proc/sys/net/core/rmem_max
echo "4096 87380 4194304" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 65536 4194304" > /proc/sys/net/ipv4/tcp_wmem

Windows XP registry
HKLM\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters

GlobalMaxTcpWindowSize="256960"

Tcp1323Opts="1"

See PSC tuning table

IPP Lecture 9 - 8

Concept Collection

ACK/NAK cumulative ACK
Bandwidth-delay product
Best effort
Bit error rate
Checksums
Client/server/concurrent/iterative
CIDR
CSMA/CD
Datagram vs reliable stream
Exponential backoff
Flow control
fragmentation

Layers/encapsulation
Maximum segment lifetime(MSL)
MTU MSS/MTU discovery
Network mask
Packet switching vs circuit-based
promiscuous
Routing
RTT
Self-clocking
Sliding window
Subnets/supernets
Switch vs hub
TTL

IPP Lecture 9 - 9

Measuring network performance

If you are a network administrator, you’re probably interested in overall
utilization, traffic patterns, and trends, e.g. for capacity planning

– Visual tools, alarms etc. (commercial network analyzers/managers)

If you are building network applications, you may want to observe your
application’s traffic and competing traffic.

If you are a network protocol designer, you may want to see the
contents of every packet in your protocol

If you are experiencing “poor network” performance you may want tools
to monitor and probe the network paths and monitor the effects of your
TCP tuning

Network metrics include utilization, bandwidth, latency, jitter, losses

Measurements tasks
– Data collection
– Analysis
– Presentation
– interpretation IPP Lecture 9 - 10

Network measurement tools

Monitoring tools (passive)
– Cisco netflows
– tcpstat
– tcpdump/tcptrace/xplot

Benchmarking tools (active)
– ttcp
– iperf
– netperf
– DBS

These are freely available on web

IPP Lecture 9 - 11

Cisco netflow

Router can collect statistics on each flow
– src, src port, dst, dst port, proto, packets, bytes, duration, int. in, int. out
– Router spits these records out via UDP to a collector host
– Tools/scripts for summarizing and graphing

NOC tool and some use for intrusion detection
– See Internet2 NOC data fastest flows, fattest flows, etc.

proto/port usage
internet2
TCP 87%

UDP 13%

iperf 21%

http 13%

nntp 11%

ftp 3%

shoutcast 3% IPP Lecture 9 - 12

tcpstat

Passive tool based on libpcap (like tcpdump)
– Can collect direct from NIC (root acces) or from a tcpdump file

Periodically reports flow summaries, pkts/proto/sec

Example
– tcpstat –r rawdata.dmp –o “%r %A %T %U %l %b\n” > tom.log
– Ascii records: timestamp # ARP #TCP #UDP netload bits/sec
– Use gnuplot to parse and plot

Lots of graphical tools to display
current network traffic real-time.

IPP Lecture 9 - 13

tcptrace and xplot

Statistics and graphs on individual TCP flow from tcpdump file

Graphs can be very handy in visualizing TCP/path problems
– View with xplot
– Bandwidth vs time (instantaneous and average)
– RTT vs time
– Sequence/ACK vs time

advertised window
loss, timeout

SACK
retransmission

– Window vs time

View differs whether tcpdump was running at sender or receiver side
– Best to do tcpdump on sender side, most of the TCP control happens at

sender side

~dunigan/ipp05/bin/ try it, you’ll like it. ☺

IPP Lecture 9 - 14

Sequence number vs time plot

Collect a tcpdump file of your network application

tcptrace –G –zxy –y –T –A100 file.dmp

Generates a bunch of *.xpl files
– a2b_rtt.xpl a2b_tsg.xpl a2b_tput.xpl

xplot a2b_tsg.xpl
– Plots sequence number vs time
– Slope of line is datarate
– Bumps in line are loss events or app. pauses
– Can zoom in with mouse “box”
– Zoom back out with left mouse click
– Can get postscript plots

IPP Lecture 9 - 15

xplot of TCP startup

Zoom in on lower left

Green line “last ack’d”

White dots, pkts transmitted

Yellow: recvr window +
ACK ticks

Distance between green
and yellow is available
window

Distance between steps is
RTT

Observe cumulative ACK

Y-axis is Bytes

TCP slow-start in action

IPP Lecture 9 - 16

RTT xplot

RTT (ms) vs time

A bit of jitter from queuing
delays

Often you will see RTT
grow just before a packet
is lost

IPP Lecture 9 - 17

xplot of throughput

Red is instantaneous data rate

Blue is average data rate
– End-point of blue is what app.

reports as the data rate

Ramp up due to slow-start

IPP Lecture 9 - 18

Timeline graph

IPP Lecture 9 - 19

tcptrace flow summary tcptrace –rl file.dmp
a->b: b->a:

total packets: 12534 total packets: 7616
ack pkts sent: 12533 ack pkts sent: 7616
pure acks sent: 2 pure acks sent: 7614
unique bytes sent: 18144208 unique bytes sent: 0
actual data pkts: 12531 actual data pkts: 0
actual data bytes: 18144208 actual data bytes: 0
rexmt data pkts: 0 rexmt data pkts: 0
rexmt data bytes: 0 rexmt data bytes: 0
outoforder pkts: 0 outoforder pkts: 0
pushed data pkts: 15 pushed data pkts: 0
SYN/FIN pkts sent: 1/1 SYN/FIN pkts sent: 1/1
req 1323 ws/ts: Y/Y req 1323 ws/ts: Y/Y
adv wind scale: 8 adv wind scale: 7
req sack: Y req sack: Y
throughput: 801108 Bps throughput: 0 Bps

RTT samples: 7569 RTT samples: 2
RTT min: 160.8 ms RTT min: 0.0 ms
RTT max: 273.2 ms RTT max: 0.0 ms
RTT avg: 168.0 ms RTT avg: 0.0 ms
RTT stdev: 16.9 ms RTT stdev: 0.0 ms

IPP Lecture 9 - 20

xplot diagnosis – buffer limited

SNDBUF
limited RCVBUF

limited

NIC or path bandwidth limited

IPP Lecture 9 - 21

xplot lost packets diagnosis (cable modem limiter)

Numerous loss events as
cable box drops packets to
limit bandwidth

RTT grows as queue builds
at modem box – input rate is
higher than customer’s limit
rate.

IPP Lecture 9 - 22

Cable tests

Bandwidth clamping at 4 mbs

but average throughput 3.5 mbs Loss event
ACK’s stop advancing
purple SACK blocks
green 3 dup
red R retransmits
available window closes

IPP Lecture 9 - 23

Receiver application pauses… then resumes reading

Application pauses for
several seconds.
Purple Z is sender
doing window probes.

Receive window goes to 0 Application starts
reading data again and
window is re-opened,
but TCP slow-starts,
ACK clocking has been
lost In the old days,
blast window packets!

IPP Lecture 9 - 24

Sender application pauses
interactive, query/response applications will not have high data rates

– Sender or receiver goes idle

Example, client requesting 8K records, wait for data, request next 8k
– Better batch or pipeline requests, e.g., newer http protocols
– xplot looks like SNDBUF limited

Our main interest will be sustaining high throughput

IPP Lecture 9 - 25

Network measurement tools

Monitoring tools (passive)
– Cisco netflows
– tcpstat
– tcpdump/tcptrace/xplot

Benchmarking tools (active)
– ttcp
– iperf
– netperf
– DBS

These are freely available on web

IPP Lecture 9 - 26

ttcp

Simple command line thoughput test (ttcp.c)

Specify port, SND/RCVBUF sizes, record size, number of records

Input/out can be from/to “sink” (-s) or stdin/stdout (compressed file)
– Good for links with compression. ttcp –t target.host < file.tgz -- Careful

you may be measuring I/O performance instead of network performance.

Start receiver ttcp –r –s –b 2000000

Then start sender ttcp –t –s –b 2000000 target.host.ugh
– Defaults: port 5001, 2K record size, 8K records

UDP option (ttcp –t –s –u), sender just blasts, receiver should report
goodput (ttcp –r –s –u)

No “duration”, control with number of records (-n)

Single-shot, restart to do another test

IPP Lecture 9 - 27

ttcp
Usage: ttcp -t [-options] host [< in]

ttcp -r [-options > out]
Common options:

-l ## length of bufs read from or written to network (default 8192)
-u use UDP instead of TCP
-p ## port number to send to or listen at (default 5001)
-s -t: source a pattern to network

-r: sink (discard) all data from network
-A align the start of buffers to this modulus (default 16384)
-O start buffers at this offset from the modulus (default 0)
-v verbose: print more statistics
-d set SO_DEBUG socket option
-b ## set socket buffer size (if supported)
-f X format for rate: k,K = kilo{bit,byte}; m,M = mega; g,G = giga

Options specific to -t:
-n## number of source bufs written to network (default 2048)
-D don't buffer TCP writes (sets TCP_NODELAY socket option)

Options specific to -r:
-B for -s, only output full blocks as specified by -l (for TAR)
-T "touch": access each byte as it's read

ttcp -r -s
ttcp-r: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp
ttcp-r: socket
ttcp-r: accept from 160.36.58.221
ttcp-r: 16777216 bytes in 1.62 real seconds = 10125.66 KB/sec +++

ttcp -t -s wisp.csm.ornl.gov
ttcp-t: buflen=8192, nbuf=2048, align=16384/0, port=5001 tcp ->
wisp.csm.ornl.gov
ttcp-t: socket
ttcp-t: connect
ttcp-t: 16777216 bytes in 1.27 real seconds = 12871.61 KB/sec +++

IPP Lecture 9 - 28

iperf

Command line with persistent server

Options for buffer size, record size, duration, UDP/TCP, parallel
streams, interval status reports

Sometimes hard to compile (C++)

Start the server iperf –s –w 2m

Start the client iperf –w 2m –c target.host
– Defaults: port 5001, 10 second test, 8 KB record size

UDP has rate option (-b) iperf –u –b 8m –c target.host
– Good for friendly probe of available bandwidth
– Reports losses, dups, out of order

IPP Lecture 9 - 29

Iperf TCP example

iperf -w 2m -c whisper
--
Client connecting to whisper, TCP port 5001
TCP window size: 4.0 MByte (WARNING: requested 2.0 MByte)
--
[3] local 160.91.212.75 port 34347 connected with 160.36.58.221 port
5001
[ID] Interval Transfer Bandwidth
[3] 0.0-10.3 sec 113 MBytes 92.1 Mbits/sec

iperf -s -w 2m
--
Server listening on TCP port 5001
TCP window size: 4.0 MByte (WARNING: requested 2.0 MByte)
--
[6] local 160.36.58.221 port 5001 connected with 160.91.212.75 port
34347
[ID] Interval Transfer Bandwidth
[6] 0.0-10.2 sec 113 MBytes 92.3 Mbits/sec

IPP Lecture 9 - 30

Iperf UDP example
iperf -s -u
--
Server listening on UDP port 5001
Receiving 1470 byte datagrams
UDP buffer size: 64.0 KByte (default)
--
[3] local 192.168.1.4 port 5001 connected with 160.36.58.221 port 33113
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[3] 0.0-10.0 sec 7.50 MBytes 6.29 Mbits/sec 0.703 ms 1/ 5352 (0.019%)
[3] 0.0-10.0 sec 1 datagrams received out-of-order
[4] local 192.168.1.4 port 5001 connected with 160.36.58.221 port 33114
[ID] Interval Transfer Bandwidth Jitter Lost/Total Datagrams
[4] 0.0-10.0 sec 7.50 MBytes 6.29 Mbits/sec 0.427 ms 3/ 5352 (0.056%)

iperf -u -b 6m -i 1 -c catv
--
Client connecting to catv, UDP port 5001
Sending 1470 byte datagrams
UDP buffer size: 64.0 KByte (default)
--
[3] local 160.36.58.221 port 33114 connected with 69.252.162.198 port 5001
[ID] Interval Transfer Bandwidth
[3] -0.0- 1.0 sec 771 KBytes 6.3 Mbits/sec
[3] 1.0- 2.0 sec 768 KBytes 6.3 Mbits/sec
[3] 0.0-10.0 sec 7.5 MBytes 6.3 Mbits/sec
…
[3] Sent 5352 datagrams

recall our TCP cable test
only got 3.4 mbs

IPP Lecture 9 - 31

netperf

Advantage: persistent netserver
– Client uses a “control” TCP connection to configure server receiver

Set buff sizes, write size, duration, anti-compression option
– Server spawns off receiver process (can’t spawn a transmitter)
– Results from server returned over control socket

Server: netserver –p 12865

Client: netperf -H server.host -- -m 8192 -M 8192 -s 100000 -S 100000

IPP Lecture 9 - 32

DBS

Distributed Benchmark System

Can evaluate multiple TCP sessions in parallel on multiple hosts

Besides data rate, can evaluate interactions of flows
– Fairness
– Loss/recovery
– Delay/jitter

Controlled by a command file
– Test commands and parameters for each host
– When to start, what to do,

Daemon processes (dbsd) running on participating hosts

Client machine drives tests from command file via dbsc command

Results collected to disk files

dbs_view used to display graphs and charts of tests

IPP Lecture 9 - 33

DBS

IPP Lecture 9 - 34

Browser-based testers

Lots of browser-based tools for evaluating your OS configuration and
testing bandwidth inbound and outbound

http://whisper.cs.utk.edu:7123/

Also down-loadable tools for “tuning” your network parameters – careful.

IPP Lecture 9 - 35

Selecting the right tool

Probably use monitoring tools in conjunction with bandwidth testers
– tcpdump/tcptrace/xplot

iperf is most popular today

Use multiple pairs of hosts to induce packet loss (send a blast of UDP)

Test environments
– standalone testbed
– Testbed with emulator

Introduce loss and delay
NISTnet or dummynet … later

– Test on the Internet
Unsure of background traffic

– Know how the test nodes’ OS TCP parameters are configured
– Be “friendly”

There are oodles of free network test tools!

IPP Lecture 9 - 36

Our tool set

ping/traceroute

ifconfig/netstat

strace

lsof

dig

ethereal tcpdump/tcptrace/xplot

ttcp/iperf/netperf

IPP Lecture 9 - 37

Things that slow TCP down

SNDBUF limits

RCVBUF limits

NIC speed or bottleneck link speed

Packet loss

Application “protocol”

For more info on using tcpdump/tcptrace/xplot see NLANR page on
TCP debugging

Web100 project (instrumented Linux kernel) provides additional TCP
flow monitoring

IPP Lecture 9 - 38

Next time …

TCP RTT estimation

Tiny packets – delayed ACKs, Nagle, silly windows

TCP timers

TCP slow-start

assignment 4 and 5

