
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 21

Parallel streams

Rate-based UDP

Optical paths

Asnmt 8

IPP Lecture 21 - 2

parallel streams

z TCP is fair
– N flows
– each gets 1/N of bandwidth

Alice and Bob sharing Clever Alice -- 3 streams

Bad girl ...

IPP Lecture 21 - 3

Psockets

z Re-write network applications to use multiple TCP sockets
– Server and client must be re-written
– Sender splits data across all the sockets
– Receiver reassembles
– Use fork() or select() or threads to concurrently feed all the sockets

z Psockets C++ class is wrapper for parallel sockets

z Examples
– iperf –P 4 –w 1m –c hosta
– Parallel file transfer: bbcp, bbftp, GridFTP

IPP Lecture 21 - 4

TCP behavior for N parallel streams

z Takes advantage of TCP’s fairness (cheating!)

z Allows you to bypass OS SNDBUF/RCVBUFF limits!
– Done at application level, no system privileges required ☺

z Faster startup
– Each flow is doubling its rate each RTT
– Takes log2(N) fewer RTT’s (equivalent to initial slow start of N segments)

z faster recovery
– often only 1 stream loses a packet

z Though droptail queues often cause losses on many streams at same time
– MD: 1/(2N) rather than 1/2
– AI: N times faster linear phase

z Example: 4 streams equivalent to AIMD(4,1/8)
z Response function:

z Synchronized packet loss (droptail queues) keep parallel TCP from being N
times faster

pRTT
MSSN 2/3

HSTCP vs streams
Window N

1 1
20 1
200 1.4
1000 3.6
10000 9.2
100000 23.0

IPP Lecture 21 - 5

Parallel TCP

z Synchronized loss (DropTail)

z Response functions
– Not TCP friendly

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1.E-07 1.E-06 1.E-05 1.E-04 1.E-03 1.E-02

Packet Loss Probability

Pa
ck

et
s/

R
TT

TCP

AIMD

HSTCP

STCP

parallel

IPP Lecture 21 - 6

GridFTP vs “equivalent” AIMD tuning

Can tuned single stream compete with parallel streams?
Mostly not with “equivalence” tuning, but sometimes….

Parallel streams have slow-start advantage.

Tests inconclusive so far….
Testing on real Internet is problematic.

Is there a “congestion metric”? Per unit of time?
Flow Mbs congestion re-xmits

untuned 28 4 30
tuned 74 5 295
parallel 52 30 401

untuned 25 7 25
tuned 67 2 420
parallel 88 17 440

Data/plots from Web100 tracer

Buffers: 64K I/O, 4MB TCP

IPP Lecture 21 - 7

SLAC throughput tests

Avg throughput for optimal & large
window sizes from SLAC to CalTech,
UFl & Manchester

Stack more important for long RTTs

Single stream Reno & HSTCP-LP
poorer on large RTTs

Parallel TCP (P-TCP) competitive, but
how many streams? Window size?

IPP Lecture 21 - 8

Tuning parallel TCP
z How many streams? Flavor of TCP? Buffer size?

– Target: bandwidth-delay product
z A few streams with big buffers?
z A lot of streams with small buffers?

– If OS limits you to 64K and you need 4 MB Î 63 streams
– Some OS’s limit open sockets to 64/process

z SLAC experiments

IPP Lecture 21 - 9

SLAC tests window size vs # streams

IPP Lecture 21 - 10

bbcp

z Parallel stream file transfer

z User-level code (C++), no daemon required

z Based on scp syntax – options for file block size, net block size, # of streams

z Authentication with ssh, bulk data not encrypted

z Auto-resume on failed transfer

z Options: compression, MD5, rate-limits

IPP Lecture 21 - 11

MulTCP

z Crowcroft, ’98, ns evaluation of a modified TCP that behaves like N
parallel streams

z Slow-start
– Send 1 packet, then 3 for every ACK
– After k RTT’s cwnd would be 3k where N TCP’s would be N2k

z Linear increase
– N TCP’s increase cwnd by N/cwnd

z Multiplicative decrease
– Only one flow out of N experiences loss, so cwndÅ cwnd * (N – ½)/N

z MulTCP response function

pRTT
MSSN 2

IPP Lecture 21 - 12

MulTCP

IPP Lecture 21 - 13

What about striping?

z Typically used in a cluster with a shared file system, but it can be a multi-
homed host

z All the advantages of parallel TCP

z Also get parallelism of CPUs, Disk subsystems, buses, NICs, paths, etc..

z You can, in certain circumstances, also get parallelism of network paths
– Example, SC02 bandwidth challenge – visipult
– pftp
– BitTorrent
– Storage area networks (parallel file systems)

z This is a much more complicated implementation and beyond the scope
of what we are primarily discussing here.

TCP land speed record: 7.7 gigabits/sec (single stream)

striping: 23 gbs

disks
disks
disks

disks

disks
disks
disks

disks

CPU
CPU
CPU

CPU

CPU
CPU
CPU

CPU
10 GigE

GigE

IPP Lecture 21 - 14

BitTorrent striping

z Peer-to-peer nets can achieve high downloads by striping across many
servers

– Same for grid applications (logistical networking)

z BitTorrent can overcome subscribers low uplink speeds (asymmetric
network) by using lots of subscribers to serve requestor

IPP Lecture 21 - 15

When should you use parallel TCP?

z Parallel TCP is the way to get around buffer limits and slow recovery!
z Engineered, private, semi private, or very over provisioned networks

are good places to use parallel TCP.
– bbcp popular on DOE’s ESnet and in high-energy physics nets (SLAC)

z Bulk data transport. It makes no sense at all to use parallel TCP for
most interactive apps.

z QoS: If you are guaranteed the bandwidth, use it
z Community Agreement: You are given permission to hog the network.
z Lambda Switched Networks: You have your own circuit, go nuts.

IPP Lecture 21 - 16

TCP choices
z Scalable, stable, fair, friendly, available

z Survey says

Flavor control method trigger response
TCP AIMD(1, ½) loss W = W – ½ W

ACK W = W + 1/W
HSTCP AIMD(a(W),b(W)) loss W = W – a(w)W

ACK W = W + b(W)/W
STCP MIMD(1%,1/8) loss W = W – W/8

ACK W = W + 0.01
N TCPs AIMD(N,1/(2N)) loss W = W – W/(2N)

ACK W = W + N/W
BI-TCP AIMD(b,1/8) loss W = W – W/8

ACK W = W + binary incr.
TCPW AI?(1,FSE) loss ssthresh = RTTmin*FSE

ACK W = W +1/W
FAST/Vegas RTT delta RTT W = W*minRTT/RTT + α

New Reno

ECN < 1%

SACK ~ 80%

timestamp ~ 13%

window 64k ~ 73%

window scale ~ 15%

TBIT results

IPP Lecture 21 - 17

TBIT, TCP behavior inference tool

z How to determine the flavor of TCP a remote host is running?

z Passive info (tcpdump): observe SYN/SYN-ACK and window advertisements
window scale, timestamps, SACK, ECN, MTU discovery

z For TCP, all the “action” is on the sender side – make remote send data

z Request web pages and induce packet loss and observe recovery
– Emulator test bed and/or TBIT tool

IPP Lecture 21 - 18

TBIT

z Modified TBIT client that “drops” packets 13 and 15 from remote

z With tcpdump observe remote’s recovery
– 3 dup retransmit or timeout, fast recovery or slow start, SACK info
– Infer TCP flavor of remote

IPP Lecture 21 - 19

TBIT observations

IPP Lecture 21 - 20

Alternate transport protocols

z If you think TCP can’t do the job …

z Need broadcast/multicast or request/reply (acceptable loss)

z Audio/video streaming
– TCP slow-start annoying, adds delay
– TCP loss recovery adds jitter and delay
– It’s ok to drop some packets
– Use rate-based delivery (application level protocol management) UDP

z High bandwidth long delay networks, TCP too slow?
– Rate-based startup, rate-based recovery, or ?
– Use your own UDP, TCP-like protocol

z Build flow control and congestion control into your app. (DCCP, atou)
– Use rate-based UDP with loss feedback for rate control

z No bursts, anecdotal evidence for higher throughput and less drops
with pacing

z UDT, SABUL, Tsunami
z Stable, fair, friendly?

IPP Lecture 21 - 21

TCP-friendly protocols in UDP

z Datagram protocols can be TCP-friendly

z IETF’s Datagram Congestion Control Protocol (DCCP)
– Goal: standard way to implement congestion control and congestion control

negotiation for real-time applications
– Features:

z Unreliable flow of datagrams with ACKs
z Reliable handshake for open/close
z Path MTU discovery
z feedback to sender: ACK, dropped, corrupted, ECN marked
z TFRC (TCP-Friendly Rate Control, a form of equation-based congestion

control), minimizes abrupt changes in the sending rate while maintaining
longer-term fairness with TCP

z Developing your own “protocols” in UDP is easy, no kernel mods required
– Application-level packet processing will be slower than kernel implementation
– Need other kernel-level transport protocols?

IPP Lecture 21 - 22

Almost TCP over UDP
z atou (ORNL) – a user-level TCP-like transport over UDP

z A test harness for evaluating different TCP-like control options and doing
experiments over real nets (test beds, emulators, Internet)

z Components: client and ACK server, written in C

z Packet header carries sequence number and timestamp

z ACK server can be configured for delayed ACK, SACK

z Client config file specifies transport operational parameters
– Support for Reno, NewReno, Vegas, SACK, FACK, HS TCP, STCP
– Set window size, dup ACK threshhold, initial slow-start window, AIMD, droplist,

MSS
– Optional tracing to file (invasive) based on debug level
– Summary report of retransmits, min/max RTT, min/max cwnd ….

z Insights
– At high data rates, user-level packet handling is CPU-intensive and ACKs are

often dropped
– OS scheduling can add further delays
– If we were doing real file I/O, performance would suffer more

IPP Lecture 21 - 23

atou output
config: portcli $Revision: 1.29 $ port 7890 debug 4 Tue May 22 05:18:54 2001
config: initsegs 2 mss 1460 tick 1.000000 timeout 0.500000
config: rcvrwin 300 increment 1 multiplier 0.500000 thresh_init 1.000000
config: newreno 1 sack 0 delack 0 maxpkts 12000 burst_limit 0 dup_thresh 3
config: sndbuf 32768 rcvbuf 32768
swift => stingray.ccs.ornl.gov 38.835049 Mbs win 300 rxmts 0
3.609111 secs 17520000 good bytes goodput 4854.381103 KBs 38.835049 Mbs
pkts in 11542 out 11999 enobufs 0
total bytes out 17518540 loss 0.000 % 38.831813 Mbs
rxmts 0 dup3s 0 packs 0 timeouts 0 dups 0 badacks 0 maxack 24 maxburst 300
minrtt 0.065249 maxrtt 0.098987 avrgrtt 0.077747
rto 0.067194 srtt 0.066705 rttvar 0.000122
win/rtt = 45.069119 Mbs bwdelay = 377 KB 258 segs
snd_nxt 12000 snd_cwnd 300 snd_una 12000 ssthresh 300 snd_max 12000

IPP Lecture 21 - 24

Some atou experiments

z Design originally motivated by broken AIX TCP stack

z Allows us to try different TCP flavors on a particular path

z Allowed us to try out Floyd’s HS TCP, moderated slow-start, AIMD mods

z Example, Juniper router re-ordering packets at LBL, but linux on both ends
was “adjusting” dup threshold. We wanted to see how a dumber TCP
would react. (plot data provided by atou trace files)

IPP Lecture 21 - 25

atou vegas trace

z Plot vegas “diff” – increase/decrease cwnd

z Also did experiments with mss > MTU (IP frags), got better
performance than 1500

IPP Lecture 21 - 26

UDP packet pacing
z Doing rate-based sends at the application level in UDP in UNIX

– UNIX software timers (see table)
z OS real-time scheduler options?

– Spin loops/busy wait (consume CPU cycles!)
z Calibrate or spin gettimeofday()/rdtsc()

– PC hardware timer, 122 us resolution
z not accessible by application

z OK for video/audio streaming requirements
– Voice 64 kbs
– MPEG 400 kbs

z Example iperf –u –b 30m –c target
– Uses gettimeofday() busy-wait

z Trouble for high-bandwidth pacing
– Gigabit/second rate with 1500 bytes packets Î 12 us spacing
– Bigger MTU (jumbo frames) would help (some, 72 us spacing)
– Cluster pacing (bursts again /)

Timer resolution
sleep 1 s
nanosleep 10 ms
select 10 ms
spin 1 us

tdelay(us)
{
double secs();
double end = secs() + us*1.e-6;
while (secs() < end);

}

IPP Lecture 21 - 27

Other packet pacing options

z Maybe a NIC that does pacing
– Different rates for different flows?

z ATM provides CBR virtual circuits
– Need infrastructure for policy/scheduling/pricing

z Have routers do pacing (traffic shaping)
– Cisco General Traffic Shaping (GTS)
– Queue bursts, then send (token bucket) at the specified rate

IPP Lecture 21 - 28

TCP packet pacing

z (anecdotal) many times we could get rate-based UDP with iperf to run
at 300 to 400 mbs with no loss between ORNL and CERN, but we
could rarely get TCP to run that fast because of packet loss … bursts?

z In theory, ACK clocking should smoothly pace TCP packets

z Burstiness in TCP
– Slow-start, may send twice the bottleneck bandwidth rate. If router queue

size is small, could drop lots of packets
– Cumulative ACK for a successfully retransmitted (lost) packet could cause a

packet burst from the sender
– ACK compression from congestion on reverse path could cause bursts
– ACK clocking only spreads data at the bottleneck rate. For high speed

multiplexed paths, each flow may transmit a burst and remain idle for the
remainder of the RTT

z Goal of pacing is to spread the transmission of a window (cwnd) of
packets over the duration of the RTT

IPP Lecture 21 - 29

TCP packet pacing

z Benefits
– Reduced loss for a flow and for the net (maybe)
– Minimal queuing until load matches bottleneck capacity (too good?)

z Difficulties
– Implementation requires a timer and bandwidth estimate (Vegas?)

z ns Vegas/RBP and Reno/RBP
– More pronounced synchronization with droptail

z More losses sometimes than Reno
– Late congestion signals because of minimal queuing!

z Don’t get loss til link is saturated
– Sometimes performs worse than Reno

(throughput and latency)
– Too nice, competes poorly with other TCP flavors

z Other (simple) burst controls
– Linux and *BSD have “max burst” parameter

IPP Lecture 21 - 30

Rate-based UDP transports for high speed nets
z Since no kernel mods required, everyone can develop their own UDP-

based file transfer protocol
– Avoid TCP’s annoying friendliness
– Blast packets (Denial of Service) or with NAK’s/retransmit for reliability
– Rate-based sender with ACK/NAK receiver

z Often separate control channel for ACK/NACK and rate info (TCP)
z Timers, sequence numbers, flow control, congestion control

– Rate-based slow start
– Rate adjustments for flow control and congestion control

• Sending rate adjusted to keep error rate below a threshold

z RBUDP, FOBS, Tsunami, SABUL, UDT ….
– We tested several of these at ORNL a few years back (LFNs)

z Usually slower than TCP
z excessive retransmits (duplicates)
z Slow to respond to congestion (unfriendly)
z Unstable to the point of unusable

– Continue to evolve

IPP Lecture 21 - 31

UDT

z UDT: UDP-based Data Transfer
– Reliable, application level, duplex, transport protocol, over UDP with

reliability, congestion, and flow control
– Son of SABUL
– Implementation: Open source C++ library

z Goals: fast, fair, friendly
– High utilization of the abundant bandwidth with either single or multiplexed

connections
– Intra-protocol fairness, RTT independence
– TCP compatibility

z Explicit loss information feedback (NAK)

z Four timers: rate control, ACK, NAK and retransmission timer
– Rate control and ACK are triggered periodically
– NAK timer is used to resend loss information if retransmission is not

received in an increasing time interval

IPP Lecture 21 - 32

UDT Protocol Architecture

Sender

Receiver

�

Sender

Receiver

�UDP Channel

UDP
Seq. No TS Payload

ACK Seq. No

NAK Loss List

Sender

A B

IPP Lecture 21 - 33

UDT congestion control

z Rate based congestion control (Rate Control)
– RC tunes the packet sending period.
– RC is triggered periodically.
– RC period is constant of 0.01 seconds.

z Window based flow control (Flow Control)
– FC limits the number of unacknowledged packets.
– FC is triggered on each received ACK.

z Slow-start is controlled by FC
– Similar to TCP, but only occurs at the session beginning.

IPP Lecture 21 - 34

UDT Rate Control

z AIMD:
– Increase parameter is related to link capacity and current sending rate;
– Decrease factor is 1/9, but does not decrease for all loss events.

z Link capacity is probed by packet pair, which is sampled UDT data
packets.
– Every 16th data packet and it successor packet are sent back to back to

form a packet pair.

– The receiver uses a median filter on the interval between the arrival times of
each packet pair to estimate link capacity.

… …

IPP Lecture 21 - 35

UDT Rate Control

z Number of packets to be increased in next rate control period
(RCTP) time is:

where B is estimated link capacity, C is current sending rate. Both
are in packets per second. MSS is the packet size in bytes. β = 1.5 *
10-6.

z Decrease sending rate by 1/9 when a NAK is received, but only if
1. largest lost sequence number in NAK is greater than the largest sequence

number when last decrease occurred; or
2. The number of NAKs since last decrease has exceeded a threshold, which

increases exponentially and is reset when condition 1 is satisfied.

⎡ ⎤)/1,/10max()8)((log10 MSSMSSinc MSSCB β×= ××−

B-C mbs increase (pkts)
1000,1000 10
100,1000 1
10,100 0.1
1,10 0.01
0.1,1 0.001
< 0.1 0.0001

IPP Lecture 21 - 36

z W = W*0.875 + AS*(RTT+ATP)*0.125

z ATP is the ACK timer period, which is a constant of 0.01 seconds.

z AS is the packets arrival speed at receiver side.
– The receiver records the packet arrival intervals.
– AS is calculated from the average of latest 16 intervals after a median filter.
– It is carried back within ACK.

BDP

UDT Flow Control

IPP Lecture 21 - 37

UDT performance

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

900

1000

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

to StarLight, 40us RTT
to Canarie, 16ms RTT
to SARA, 110ms RTT

IPP Lecture 21 - 38

UDT intra-protocol fairness

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

0 10 20 30 40 50 60 70 80 90 100
320

322

324

326

328

330

Time (s)

Th
ro

ug
hp

ut
 (M

bp
s)

to StarLight, 40us RTT
to Canarie, 16ms RTT
to SARA, 110ms RTT

IPP Lecture 21 - 39

UDT convergence/stability (simulation)

0 50 100 150 200 250

100

80

60

40

20

0

20

40

60

80

100

Time (s)

C
B

R
 R

at
e

(M
bp

s)

 U
D

T
Th

ro
ug

hp
ut

 (M
bp

s)

IPP Lecture 21 - 40

Optical network directions

z TCP over optical circuits, transparent … not a problem
– Over OC3, OC12, OC192 …

z New optical options
– Optical burst switching

z Circuit only needed when a burst of data is ready to send
– Optical packet switching

z Issues of queuing and mapping IP/TCP onto optical packets
z Could be queuing delays and loss

– Lambda switching (like MPLS)
z Circuit based
z need infrastructure for circuit setup/takedown, scheduling
z User application has a dedicated 10Gig path – no congestion!
z Transport protocol

– Do we need all the TCP baggage?
– Low media loss rates, less than < 10-14

– UDP blasters should be good enough (UDT)

IPP Lecture 21 - 41

Next time …

z Slow-speed networks (compression)

z Asymmetric networks

