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Lecture  19

delay-based congestion avoidance

TCP Vegas

TCP FAST

TCP Westwood
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Check this out …

Two runs: one with Reno, one with Vegas,  1.6 Mbs path, 100 ms RTT
– TCP’s window size exceeds queue size
– Usual saw-tooth, packet loss,  and ¾ datarate for Reno
– BUT TCP Vegas has no packet loss and runs at link speed!

Is this the answer to our prayers?
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Accelerating TCP

Tuning configuration parameters
– SNDBUF/RCVBUF – bandwidth-delay product
– Txquelen
– RFC1323 (window scaling, timestamps)
– Nagle, delayed ACK
– Initial slow-start

Speeding recovery after packet loss
– Fast retransmit, fast recovery
– SACK/FACK
– AIMD, STCP, HSTCP, BI-TCP

Avoiding packet loss
– Dup threshold (out of order resiliance)
– Slow-start and congestion avoidance (reduces losses)
– Vegas/FAST
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Delay-based congestion avoidance

Standard TCP detects congestion by packet loss
– Then we must go thru all sorts of gyrations to speed recovery

Fast retransmit, fast recovery, SACK, FACK, HSTCP, BI-TCP

TCP Vegas tries to avoid packet loss by slowing down (reducing cwnd) 
when RTT starts to increase

– Assumption: congestive loss is preceded by buildup in router queue which 
can be sensed by the increasing RTT
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Vegas

Sender adjusts sending rate to avoid filling the buffer

Let BaseRTT be the minimum of all measured RTTs

Sender-side bandwidth estimation:    Compute 
ExpectRate = CongestionWindow/BaseRTT

Sender calculates sending rate (ActualRate) once per RTT

Sender compares ActualRate with ExpectRate
Diff = ExpectedRate – ActualRate
if Diff < α

increase CongestionWindow linearly
else if Diff > β

decrease CongestionWindow linearly
else

leave CongestionWindow unchanged

Typically:    α = 1 β = 3

If RTT grows, ActualRate will 
shrink, and Diff will grow, 
and cwnd will be reduced.
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Vegas paper (’95)

To avoid drops, slow-start moderator (γ)
– Exponential growth every other RTT, to be able to detect/avoid congestion
– Do normal slow-start until expected - actual > γ then do linear increase
– Slow-start begins with cwnd 2  (not 1)
– Some good arguments for moderating slow-start for large windows, but 

probably hurts performance for small windows

Proposes new retransmission mechanism
– RTT for every segment sent is measured with high res timer
– Dup ACK is checked against segment timeout, if exceeded, retransmit

Paper also proposed multiplicative decrease of ¼
– Certainly helped performance in the event of loss
– But has nothing to do with delay-based congestion control
– Biased some of the performance results in the paper
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Vegas implementations

Original work done on X kernel emulator

Linux 2.6 has Vegas (off by default)
– sysctl’s

net.ipv4.tcp_vegas_gamma = 2
net.ipv4.tcp_vegas_beta = 6
net.ipv4.tcp_vegas_alpha = 2
net.ipv4.tcp_vegas_cong_avoid = 0

ns
– Agent/TCP/Vegas 
– Defaults

Agent/TCP/Vegas set v_alpha_ 1
Agent/TCP/Vegas set v_beta_ 3
Agent/TCP/Vegas set v_gamma_ 1

IPP Lecture 19 - 8

Vegas performance

Potentially great

Chapter 11 pair-wise tests
– Vegas has no losses, but
Flavor   goodput Kbs
Vegas/BI-TCP   105/1370
Vegas/Fack 128/1346
Vegas/Sack1    138/1336 
Vegas/Tahoe    178/1256
Vegas/Newreno 311/1141
Vegas/Reno 368/1068
Vegas/Westwood 506/963
Vegas/Vegas    919/553

Chapter 11, 11.7, all competing
Flavor   goodput Kbs
Fack 397
Tahoe 346
Sack1 344
Newreno 164
Vegas 140
Reno 49

Anecdotal results

IPP Lecture 19 - 9

Vegas performance

Good
– Often higher throughput, fewer losses
– Keeps queue size small (max of α packets in q)
– Vegas requires a high-precision timer (tick) and measures RTT on every 

packet (timestamps would help)

Bad
– Too friendly, politely backs off as other TCP variants consume the 

bandwidth
– If initial BaseRTT is too high, then performance limited
– Competing Vegas flows: 2nd flow to start observes longer RTT and doesn’t 

get as much bandwidth
– Congestion on reverse path can increase RTT and cause Vegas to use less 

bandwidth on forward path

Open research: proper values for α, β (or dynamically adjust?!)

LANL proposals to increase α, β for long fat pipes …

Recent delay-based congestion avoidance  interest focused on FAST
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FAST

CalTech’s new (’02) TCP control algorithm for high speed nets

Delay-based congestion avoidance
– RTT estimators rather than Vegas bandwidth estimator
– Sensing queuing delays (need high precision time stamps)

Patches for Linux

Licensing restrictions 
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Difficulties at large window

Equilibrium problem
– Packet level: AI too slow, MD too drastic.
– Flow level: requires very small loss probability.

Dynamic problem
– Packet level: must oscillate on a binary signal.
– Flow level: unstable at large window.
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Problem: binary signal
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Solution: multibit signal  (variation in RTT)
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Queueing Delay in FAST

Queueing delay is not used to avoid loss
Queueing delay defines a target number of packets 
(α) to be buffered for each flow
Queueing delay allows FAST to estimate  the 
distance from the target
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Architecture

Burstiness
  Control

  Window 
  Control

TCP Protocol Processing

  Data
Control

Estimation

RTT timescale
Loss recovery

<RTT timescale

Data control – which packets to send
Window control – how many packets to send
Burst control – when to send packets IPP Lecture 19 - 16

Window Control Algorithm

RTT: exponential moving average with weight of min {1/8, 3/cwnd}

baseRTT: latency, or minimum RTT

α determines fairness and convergence rate

Fast maintains an exponential weighted average RTT measurement and 
adjusts its window in proportion to the amount by which the current RTT 
measurement differs from the weighted average RTT measurement. 

α    
RTT

baseRTT   w    w +⋅←
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FAST implementations

Patches available for linux and ns

Parameters
– tcp_fast on/off
– tcp_fast_alpha
– tcp_fast_beta typically 17/16 of alpha
– tcp_fast_gamma slow start parameter
– tcp_fast_bc burst control
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Dynamic sharing: 3 flows
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Dynamic sharing: 3 flows
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Aggregate throughput
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Fairness
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Throughput – SLAC wide-area tests

Avg throughput for optimal & large 
window sizes from SLAC to CalTech, 
UFl & Manchester

Stack more important for long RTTs

Single stream Reno & HSTCP-LP 
poorer on large RTTs
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Stability  (throughput  std. dev/average)

Stability from SLAC to Caltech, UFl & 
Manchester, with optimal and large 

windows vs TCP stacks and UDP cross 
traffic
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Open issues

baseRTT estimation
– route changes, dynamic sharing
– does not upset stability

small network buffer
– at least like TCP
– adapt α on slow timescale, but how?

TCP-friendliness
– friendly at least at small window
– tunable, but how to tune?

reverse path congestion
– should react? rare for large transfer?
– SLAC tests show FAST TCP is very handicapped by reverse traffic

“DCA for TCP” shows  with Internet measurements and ns that 
DCA can predict/avoid only 7% to 18% of congestions events.

may need fast recovery mechanisms for non-congestive loss

Delay-based congestion avoidance is hard and doesn’t 
compete well with loss-based algorithms.
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IP Rights for FAST 

Caltech owns IP rights
– applicable more broadly than TCP
– leave all options open

Will license free at least for education & research community

Will be flexible to facilitate wide deployment
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TCP Westwood

Enhance congestion control by sender-side bandwidth estimation
– Estimates computed by sampling and exponential filtering
– Samples are determined from ACK inter-arrival times and info in ACKs

regarding bytes delivered  (like packet-pair estimators)
– Westwood calls the estimate “Fair Share Estimate” (FSE)

FSE is used to set cwnd and ssthresh after packet loss
– For 3 dup ACKs

ssthresh FSE * RTTmin (instead of cwnd/2)
if cwnd > ssthresh then  cwnd ssthresh

– For timeout
ssthresh FSE * RTTmin and   cwnd 1
RTTmin is min RTT observed for flow

FSE * RTTmin == bandwidth-delay product 
= the most recent observed data rate of the 
connection
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Bandwidth estimation accuracy

TCP sharing flow with ON/OFF UDP flow
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TCPW benefits

Efficiency
– Better link utilization when loss are due to non-congestive events (random 

loss, lossy medium (wireless)) as well as congestion
– Significant gain for large pipe with big RTT

Better fairness over varying RTTs

Friendliness good

Stability good
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TCPW and random loss
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TCPW and fairness

Fairness with competing 
connections

Jain’s 

As fair as NewReno

RTT fairness
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Single drop example (LFN)

TCPW actually does not even flinch, cwnd stays at 3500

Treats single-loss as non-congestion event since no RTT changes prior 
to loss – why TCPW is good for wireless  

IPP Lecture 19 - 33

Early drop in slow-start

LFN nightmare: early packet loss in initial slow-start

Early drop in slow-start, so congestion-avoidance phase dominates

RTT 140 ms, target window 3500 segments, no delayed ACKs
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TCPW implementations

Linux 2.6
– sysctl net.ipv4.tcp_westwood = 0

ns   I’ve added      Agent/TCP/WestwoodNR
– For Vegas/Fast/Westwood in ns, you want 

tcpTick_ to be 0.01  (ns default now) 
– TCPW is fairest 

TCPW+ combines bandwidth estimation with 
rate estimation

Estimator summary
– Vegas uses bandwidth estimate over a RTT
– FAST uses RTT estimator
– TCPW uses bandwidth estimate base on 

packet-pairs “averaged” over recent ACKs

Table 11.2

flavor/flavor Goodput Kbs

Reno/Reno      924/445

Tahoe/Reno    1233/196

Vegas/Reno     368/1068

Newreno/Reno  964/448

Sack1/Reno    982/466

Fack/Reno     1017/444

BITCP/Reno    1370/105

Westwood/Reno  642/649
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H-TCP

timer-based response function to window inflation 

Multiplicative decrease b = RTTmin/RTTmax
– RTTmax and RTTmin for the previous congestion interval
– If RTT has variance > 20%, then b = ½ (standard TCP)

Additive increase is 1 (a =1, standard TCP) for an initial period (1 s)
– Later  increase is a 2nd degree polynomial function of the time since the last 

congestion event 
cwnd cwnd + f(T)/cwnd
a = ½ (T-1)2 + 10 (T-1) + 1
Where T is the time since the last congestion event
Further modified by b    a’ = 2a(1-b)

SLAC tests show H-TCP worse than competitors (see better results at 
H-TCP site)

Patches for Linux and mods for ns available

T     cwnd
1.1     100
3.1    1000
4.3    2000
6.6    5000
9.2   10000
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H-TCP response function
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TCP  … what to use?

Tahoe

Reno

NewReno

SACK

FACK

STCP

HSTCP

BI-TCP

TCPW

H-TCP

Vegas

FAST

Differentiators
– Slow-start
– AIMD values
– ACK/SACK info
– Loss based vs delay based
– Fair
– Stable
– TCP-friendly
– RTT fairness
– Scalable
– Available?

Typical: NewReno + SACK
– Linux BI-TCP

Don’t forget proper window size
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Next time …

Active queue management

XCP

assignment 9


