
www.cs.utk.edu/~dunigan/ipp/

Internet Programming & Protocols
Lecture 19

delay-based congestion avoidance

TCP Vegas

TCP FAST

TCP Westwood

IPP Lecture 19 - 2

Check this out …

Two runs: one with Reno, one with Vegas, 1.6 Mbs path, 100 ms RTT
– TCP’s window size exceeds queue size
– Usual saw-tooth, packet loss, and ¾ datarate for Reno
– BUT TCP Vegas has no packet loss and runs at link speed!

Is this the answer to our prayers?

IPP Lecture 19 - 3

Accelerating TCP

Tuning configuration parameters
– SNDBUF/RCVBUF – bandwidth-delay product
– Txquelen
– RFC1323 (window scaling, timestamps)
– Nagle, delayed ACK
– Initial slow-start

Speeding recovery after packet loss
– Fast retransmit, fast recovery
– SACK/FACK
– AIMD, STCP, HSTCP, BI-TCP

Avoiding packet loss
– Dup threshold (out of order resiliance)
– Slow-start and congestion avoidance (reduces losses)
– Vegas/FAST

IPP Lecture 19 - 4

Delay-based congestion avoidance

Standard TCP detects congestion by packet loss
– Then we must go thru all sorts of gyrations to speed recovery

Fast retransmit, fast recovery, SACK, FACK, HSTCP, BI-TCP

TCP Vegas tries to avoid packet loss by slowing down (reducing cwnd)
when RTT starts to increase

– Assumption: congestive loss is preceded by buildup in router queue which
can be sensed by the increasing RTT

IPP Lecture 19 - 5

Vegas

Sender adjusts sending rate to avoid filling the buffer

Let BaseRTT be the minimum of all measured RTTs

Sender-side bandwidth estimation: Compute
ExpectRate = CongestionWindow/BaseRTT

Sender calculates sending rate (ActualRate) once per RTT

Sender compares ActualRate with ExpectRate
Diff = ExpectedRate – ActualRate
if Diff < α

increase CongestionWindow linearly
else if Diff > β

decrease CongestionWindow linearly
else

leave CongestionWindow unchanged

Typically: α = 1 β = 3

If RTT grows, ActualRate will
shrink, and Diff will grow,
and cwnd will be reduced.

IPP Lecture 19 - 6

Vegas paper (’95)

To avoid drops, slow-start moderator (γ)
– Exponential growth every other RTT, to be able to detect/avoid congestion
– Do normal slow-start until expected - actual > γ then do linear increase
– Slow-start begins with cwnd 2 (not 1)
– Some good arguments for moderating slow-start for large windows, but

probably hurts performance for small windows

Proposes new retransmission mechanism
– RTT for every segment sent is measured with high res timer
– Dup ACK is checked against segment timeout, if exceeded, retransmit

Paper also proposed multiplicative decrease of ¼
– Certainly helped performance in the event of loss
– But has nothing to do with delay-based congestion control
– Biased some of the performance results in the paper

IPP Lecture 19 - 7

Vegas implementations

Original work done on X kernel emulator

Linux 2.6 has Vegas (off by default)
– sysctl’s

net.ipv4.tcp_vegas_gamma = 2
net.ipv4.tcp_vegas_beta = 6
net.ipv4.tcp_vegas_alpha = 2
net.ipv4.tcp_vegas_cong_avoid = 0

ns
– Agent/TCP/Vegas
– Defaults

Agent/TCP/Vegas set v_alpha_ 1
Agent/TCP/Vegas set v_beta_ 3
Agent/TCP/Vegas set v_gamma_ 1

IPP Lecture 19 - 8

Vegas performance

Potentially great

Chapter 11 pair-wise tests
– Vegas has no losses, but
Flavor goodput Kbs
Vegas/BI-TCP 105/1370
Vegas/Fack 128/1346
Vegas/Sack1 138/1336
Vegas/Tahoe 178/1256
Vegas/Newreno 311/1141
Vegas/Reno 368/1068
Vegas/Westwood 506/963
Vegas/Vegas 919/553

Chapter 11, 11.7, all competing
Flavor goodput Kbs
Fack 397
Tahoe 346
Sack1 344
Newreno 164
Vegas 140
Reno 49

Anecdotal results

IPP Lecture 19 - 9

Vegas performance

Good
– Often higher throughput, fewer losses
– Keeps queue size small (max of α packets in q)
– Vegas requires a high-precision timer (tick) and measures RTT on every

packet (timestamps would help)

Bad
– Too friendly, politely backs off as other TCP variants consume the

bandwidth
– If initial BaseRTT is too high, then performance limited
– Competing Vegas flows: 2nd flow to start observes longer RTT and doesn’t

get as much bandwidth
– Congestion on reverse path can increase RTT and cause Vegas to use less

bandwidth on forward path

Open research: proper values for α, β (or dynamically adjust?!)

LANL proposals to increase α, β for long fat pipes …

Recent delay-based congestion avoidance interest focused on FAST
IPP Lecture 19 - 10

FAST

CalTech’s new (’02) TCP control algorithm for high speed nets

Delay-based congestion avoidance
– RTT estimators rather than Vegas bandwidth estimator
– Sensing queuing delays (need high precision time stamps)

Patches for Linux

Licensing restrictions

IPP Lecture 19 - 11

Difficulties at large window

Equilibrium problem
– Packet level: AI too slow, MD too drastic.
– Flow level: requires very small loss probability.

Dynamic problem
– Packet level: must oscillate on a binary signal.
– Flow level: unstable at large window.

IPP Lecture 19 - 12

Problem: binary signal

Q
u
e
u
e

D
e
l
a
y

WindowC D

R

de
la
y

loss

TCP

oscillation

IPP Lecture 19 - 13

Solution: multibit signal (variation in RTT)

Q
u
e
u
e

D
e
l
a
y

WindowF

de
la
y

loss

T

R

FAST

stabilized

IPP Lecture 19 - 14

Queueing Delay in FAST

Queueing delay is not used to avoid loss
Queueing delay defines a target number of packets
(α) to be buffered for each flow
Queueing delay allows FAST to estimate the
distance from the target

IPP Lecture 19 - 15

Architecture

Burstiness
 Control

 Window
 Control

TCP Protocol Processing

 Data
Control

Estimation

RTT timescale
Loss recovery

<RTT timescale

Data control – which packets to send
Window control – how many packets to send
Burst control – when to send packets IPP Lecture 19 - 16

Window Control Algorithm

RTT: exponential moving average with weight of min {1/8, 3/cwnd}

baseRTT: latency, or minimum RTT

α determines fairness and convergence rate

Fast maintains an exponential weighted average RTT measurement and
adjusts its window in proportion to the amount by which the current RTT
measurement differs from the weighted average RTT measurement.

α
RTT

baseRTT w w +⋅←

IPP Lecture 19 - 17

FAST implementations

Patches available for linux and ns

Parameters
– tcp_fast on/off
– tcp_fast_alpha
– tcp_fast_beta typically 17/16 of alpha
– tcp_fast_gamma slow start parameter
– tcp_fast_bc burst control

IPP Lecture 19 - 18

Dynamic sharing: 3 flows

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

FAST Linux

Dynamic sharing on Dummynet
capacity = 800Mbps
delay=120ms
3 flows
iperf throughput
Linux 2.4.x (HSTCP: UCL)

IPP Lecture 19 - 19

Dynamic sharing: 3 flows

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5
th

ro
ug

hp
ut

 (K
bp

s)

sec
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
0

1

2

3

4

5

6

7

8

9

10
x 10

5

th
ro

ug
hp

ut
 (K

bp
s)

sec

FAST Linux

HSTCP STCP

Steady throughput

IPP Lecture 19 - 20

Aggregate throughput

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

100 200 300 400 500 600 700 800

C
D

F

Throughput (Mbps)

TCP Reno
FAST TCP

HighSpeed TCP
Scalable TCP

small
window
800pkts

large
window

8000

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

IPP Lecture 19 - 21

Fairness

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Fairness

TCP Reno
FAST TCP

HighSpeed TCP
Scalable TCP

Jain’s index

H
ST

CP
 ~

 R
en

o

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts IPP Lecture 19 - 22

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
D

F

Stability

TCP Reno
FAST TCP

HighSpeed TCP
Scalable TCP

Stability

Dummynet: cap = 800Mbps; delay = 50-200ms; #flows = 1-14; 29 expts

stable in
diverse

scenarios

IPP Lecture 19 - 23

Throughput – SLAC wide-area tests

Avg throughput for optimal & large
window sizes from SLAC to CalTech,
UFl & Manchester

Stack more important for long RTTs

Single stream Reno & HSTCP-LP
poorer on large RTTs

IPP Lecture 19 - 24

Stability (throughput std. dev/average)

Stability from SLAC to Caltech, UFl &
Manchester, with optimal and large

windows vs TCP stacks and UDP cross
traffic

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

R
en

o
TC

P
16 S

-T
C

P

Fa
st

 T
C

P

H
S

-T
C

P

Bi
c-

TC
P

H
 T

C
P

H
S

TC
P

-
LP

St
ab

ili
ty

 in
de

x Avg UDP 60s
Avg UDP 30s
Avg no UDP

Little difference between periodicity of UDP (30 & 60 secs)
HSTCP-LP & FAST have larger stability indices (less stability)

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

S
-T

C
P

H
 T

C
P

B
ic

-T
C

P

H
S

-T
C

P

R
en

o
TC

P
 1

6

Fa
st

 T
C

P

R
en

o
TC

P

H
S

TC
P

-L
P

St
ab

ili
ty

Average
Caltech
UFlorida
Manchester

Short RTT is more stable

No UDP

+UDP

Stability from SLAC to Caltech, U Florida & Manchester

IPP Lecture 19 - 25

Open issues

baseRTT estimation
– route changes, dynamic sharing
– does not upset stability

small network buffer
– at least like TCP
– adapt α on slow timescale, but how?

TCP-friendliness
– friendly at least at small window
– tunable, but how to tune?

reverse path congestion
– should react? rare for large transfer?
– SLAC tests show FAST TCP is very handicapped by reverse traffic

“DCA for TCP” shows with Internet measurements and ns that
DCA can predict/avoid only 7% to 18% of congestions events.

may need fast recovery mechanisms for non-congestive loss

Delay-based congestion avoidance is hard and doesn’t
compete well with loss-based algorithms.

IPP Lecture 19 - 26

IP Rights for FAST

Caltech owns IP rights
– applicable more broadly than TCP
– leave all options open

Will license free at least for education & research community

Will be flexible to facilitate wide deployment

IPP Lecture 19 - 27

TCP Westwood

Enhance congestion control by sender-side bandwidth estimation
– Estimates computed by sampling and exponential filtering
– Samples are determined from ACK inter-arrival times and info in ACKs

regarding bytes delivered (like packet-pair estimators)
– Westwood calls the estimate “Fair Share Estimate” (FSE)

FSE is used to set cwnd and ssthresh after packet loss
– For 3 dup ACKs

ssthresh FSE * RTTmin (instead of cwnd/2)
if cwnd > ssthresh then cwnd ssthresh

– For timeout
ssthresh FSE * RTTmin and cwnd 1
RTTmin is min RTT observed for flow

FSE * RTTmin == bandwidth-delay product
= the most recent observed data rate of the
connection

IPP Lecture 19 - 28

Bandwidth estimation accuracy

TCP sharing flow with ON/OFF UDP flow

IPP Lecture 19 - 29

TCPW benefits

Efficiency
– Better link utilization when loss are due to non-congestive events (random

loss, lossy medium (wireless)) as well as congestion
– Significant gain for large pipe with big RTT

Better fairness over varying RTTs

Friendliness good

Stability good

IPP Lecture 19 - 30

TCPW and random loss

IPP Lecture 19 - 31

TCPW and fairness

Fairness with competing
connections

Jain’s

As fair as NewReno

RTT fairness

IPP Lecture 19 - 32

Single drop example (LFN)

TCPW actually does not even flinch, cwnd stays at 3500

Treats single-loss as non-congestion event since no RTT changes prior
to loss – why TCPW is good for wireless

IPP Lecture 19 - 33

Early drop in slow-start

LFN nightmare: early packet loss in initial slow-start

Early drop in slow-start, so congestion-avoidance phase dominates

RTT 140 ms, target window 3500 segments, no delayed ACKs

IPP Lecture 19 - 34

TCPW implementations

Linux 2.6
– sysctl net.ipv4.tcp_westwood = 0

ns I’ve added Agent/TCP/WestwoodNR
– For Vegas/Fast/Westwood in ns, you want

tcpTick_ to be 0.01 (ns default now)
– TCPW is fairest

TCPW+ combines bandwidth estimation with
rate estimation

Estimator summary
– Vegas uses bandwidth estimate over a RTT
– FAST uses RTT estimator
– TCPW uses bandwidth estimate base on

packet-pairs “averaged” over recent ACKs

Table 11.2

flavor/flavor Goodput Kbs

Reno/Reno 924/445

Tahoe/Reno 1233/196

Vegas/Reno 368/1068

Newreno/Reno 964/448

Sack1/Reno 982/466

Fack/Reno 1017/444

BITCP/Reno 1370/105

Westwood/Reno 642/649

IPP Lecture 19 - 35

H-TCP

timer-based response function to window inflation

Multiplicative decrease b = RTTmin/RTTmax
– RTTmax and RTTmin for the previous congestion interval
– If RTT has variance > 20%, then b = ½ (standard TCP)

Additive increase is 1 (a =1, standard TCP) for an initial period (1 s)
– Later increase is a 2nd degree polynomial function of the time since the last

congestion event
cwnd cwnd + f(T)/cwnd
a = ½ (T-1)2 + 10 (T-1) + 1
Where T is the time since the last congestion event
Further modified by b a’ = 2a(1-b)

SLAC tests show H-TCP worse than competitors (see better results at
H-TCP site)

Patches for Linux and mods for ns available

T cwnd
1.1 100
3.1 1000
4.3 2000
6.6 5000
9.2 10000

IPP Lecture 19 - 36

H-TCP response function

IPP Lecture 19 - 37

TCP … what to use?

Tahoe

Reno

NewReno

SACK

FACK

STCP

HSTCP

BI-TCP

TCPW

H-TCP

Vegas

FAST

Differentiators
– Slow-start
– AIMD values
– ACK/SACK info
– Loss based vs delay based
– Fair
– Stable
– TCP-friendly
– RTT fairness
– Scalable
– Available?

Typical: NewReno + SACK
– Linux BI-TCP

Don’t forget proper window size

IPP Lecture 19 - 38

Next time …

Active queue management

XCP

assignment 9

