

You are here ...

Attacks \& Defenses	Cryptography	Applied crypto
- Risk assessment ${ }^{\text {r }}$	-Random numbers ${ }^{\text {d }}$	-SSH
- Viruses ${ }^{\text {d }}$	-Hash functions \checkmark	-PGP
- Unix security ${ }^{\text {d }}$		
- authentication	MD5, SHA,RIPEMD	-S/Mime
- Network security	-Classical + stegor	-SSL
Firewalls,vpn,IPsec,IDS	- Number theory	-Kerberos
Foren	-Symmetric key ${ }^{\text {d }}$ DES, Rilndael, RC5	\cdot-Psec
	- Public key	
CNS Lecture 8-3	RSA, DSA, D-H,ECC	E

In the news

- Dept of Commerce machines broken into multiple times (root kits) by Chinese hackers - going to replace all hardware and software!
- McAfee epolicy buffer overflow
- AOL's "you've got pictures" buffer overflow
- 120 new vulnerabilities reported this week (SANS)

The mathematics of cryptography

Finite (discrete) mathematics
-Modular arithmetic (shift ciphers, polyalphabets, Hill cipher)
-Primes and prime factors, greatest common divisor, BIG integer libraries
-Linear transforms (row/column transpositions, linear algebra)
-Exponentiation/discrete logs (D-H, RSA) -Polynomial arithmetic (CRC, AES, LFSR, ECC) -Elliptic curves (ECC)

CNS Lecture 8-4

Number theory

prime -- number only divisible by 1 or itself
any integer can be expressed as the product of prime powers (fundamental theorem of arithmetic)

$$
\begin{gathered}
a=p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{k}^{a_{k}} \\
3600=2^{4} \times 3^{2} \times 5^{2}
\end{gathered}
$$

Modular arithmetic	
- mod (congruence), remainder after dividing	
- if a $\bmod n=b$ then $a=k n+b$	
- $11 \bmod 3=5 \bmod 3=2$	
- modular arithmetic (+,*)on non-negative integers Z_{n}	
- associative $a+(b+c) \bmod n=(a+b)+c \bmod n$	
-commutative $a b \bmod n=b a \bmod n$	
- distributive $a(b+c) \bmod n=(a b+a c) \bmod n$	
-reducible $a b \bmod n=((\bmod n)(b \bmod n)) \bmod n$	
- At least a commutative ring	
- Additive identity: $5+0=5$	
- additive inverse: $(5+$? $) \bmod 8=0$	
lets us work with smaller numbers	
CNS Lecture 8-7	$\underline{5}$

multiplication

- multiplicative inverse $\left(x^{-1} x\right) \bmod n=1$ $3 * 9 \bmod 26=1$
$4^{*} \times \bmod 8=1$?
- only numbers relatively prime to n
have multiplicative inverse $\left(Z_{n^{*}}\right)$
- relatively prime \rightarrow don't share any common factors
- if p is prime, all elements have multiplicative inverse (except O) Z_{p} is a field

CNS Lecture 8 - 8

Modular shortcuts

- $\operatorname{ab} \bmod n=((\operatorname{a\operatorname {mod}n})(b \bmod n)) \bmod n$
- exponentiation a^{b} mod n, use squaring
$x^{16} 4$ multiplications
$x x x^{2} x^{2} x^{4} x^{4} x^{3} x^{3}$
-both: $a^{8} \bmod n=\left(\left(a^{2} \bmod n\right)^{2} \bmod n\right)^{2} \bmod n$
rather than 7 multiplies, and one huge division
- Chinese Remainder Theorem (CRT)
- do arithmetic mod factors of n (faster)
-handy in RSA (example later)

CNS Lecture 8-10

Primality testing /s p prime?

- infeasible to check all factors for really BIG integer
- can't determine absolutely if big number is prime, but can test for "highly probable"
- Fermat's theorem
if p is prime and a is not divisible byp p (relatively prime) then $a^{p-1}=1 \bmod p$
- Lehman variation of Fermat's theorem
choose random a, if p is prime, $\quad a^{p-1}=1 \bmod p$
exceptions: Carmichael numbers, e.g., $p=561=3 \times 11 \times 17$ (pseudo-primes)
- Rivest variation of Fermat's $\quad 2^{p-1}=1$ modp
true if p is prime, but there are pseudo-primes n that meet the test.
For 256 -bit number (2^{256}), 'bout 10^{74} primes and 10^{52} pseudo-primes,
so chance of 1 in 10^{22} that p satisfies the test and is not prime

- Miller-Rabin

if there is a solution to $x^{2}=1 \bmod p$ other than 1 and -1 , then p is NOT prime So try lots of random x 's
probability p is NOT prime after k successful tests, ($\quad(1 / 4)^{k}$
See Schneier, Applied Cryptography
CNS Lecture 8-13

Problems with symmetric key crypto

- Symmetric key crypto (DES, AES) needs pre-shared key
- How do Alice and Bob get their key?
- For N people, need N^{2} sets of shared keys
- Mathematics will give us some other choices
-Diffie-Hellman ('76) will allow Alice and Bob to establish a shared key
-Public key crypto (RSA, ECC) will allow Alice to publish her public key

CNS Lecture 8-15

Finding a prime

1. generate random n-bit number p
2. set hi-bit to 1 , low-bit to 1
3. verify p is not divisible by first 2048 primes
4. perform Miller-Rabin for some random a. If p passes, generate another a, and repeat test (5 times?). If it fails, generate a new p and go back to step 1.
roughly what OpenSSL lib does in BN _generate_prime ()

density of primes:

- proportion of positive integers <x that are prime is roughly $2 / \ln x$
- for 512-bitn $\left(2^{512}\right)$ can find a prime in 177 tries
- this is what takes time when you first generate your PGP keys

CNS Lecture 8-14

D-H uses
Used to generate session keys between two parties in
- Netscape (SSL)
- Secure PVM
- stel (secure TELNET)
- SKIP, ISAKMP, GKMP
- Cisco encrypting routers
- nautilus
- Sun secure RPC (keyserv)
- variation: publish your "public key" Y, then Bob wouldn't have to be online when
Alice wants to send him a message encrypted with Y (SKIP)
cNS Lecture 8 - 19

D-H strengths

- easy to calculate $g^{x} \bmod p$
- Eve can capture X and Y , but infeasible to do discrete log, find x given X
- choose big (1024 bits) prime p
- nice if $(p-1) / 2$ is also prime (strong prime)
- find g that is generator mod p, that is, g^{a} will generate all elements (1 to $p-1$)
e.g., 2 is a generator mod 11
- given p, there are ways to find g
- you can use published p, g pairs
- need good random number generator (big integers) for secrets x and y
- great for session keys, perfect forward secrecy
- strong against passive (offline) attacks

CNS Lecture 8-20

D-H weakness

- vulnerable to active attack (Trudy in the middle)
- no authentication (not sure who you're talking to)

Alice, Bob, Trudy know p and g
Alice and Bob think they are exchanging with each other
Trudy, in the middle, does exchange with each
Trudy establishes $K_{A Y}$ and $K_{B X}$
Trudy can decrypt, re-encrypt and relay, or make changes
loss of privacy and integrity

CNS Lecture 8-21

Implementing D-H

- need random numbers
- may also need to find prime and generator (use known ones)
- want big prime (1024 bits)
- need multiprecision integer library (UNIX mp, -|ssl, GNU gmp) see example dhtest.c
or perl Bigint, or C++ Integer, or Java Biginteger

Crypto Toolki

secret-key crypto \checkmark
public-key crypto
public-key crypto
big-number math
random numbers \checkmark
prime numbers \downarrow

CNS Lecture 8-23

EKE (mutual authentication) Alice and Bob share password S Alice calculates X, sends X encrypted with S -Alice calculates X, sends X encrypted with S and calate K nd calculates K
Bob sends Y encrypted with S and a challenge encrypted with K
Alice decrypts Y , calculates K , decrypts
Alice generates challenge T and sends R and T encrypted with K
Bob decrypts challenges, and sends back T encrypted with K

SPEKE - licensed, mutual authentication shared password S , huge prime p where ($p-1$)/2 also prime

- Alice sends $A=S^{2 x} \bmod p$ - Bob sends $\quad B=S^{2 y} \bmod p$
-each calculate $K=A^{2 y}=B^{2 x}$ each calculate $\mathrm{K}=\mathrm{A}^{2 y}=\mathrm{B}^{2 x}$ - Bob sends hash(hash -Alice sends hash(K) each verify hashes
CNS Lecture 8-22

BIG integer arithmetic

- Need software to do arithmetic on 1000-bit (100's of digits) numbers
- CPU's like to do 32-bit integer arithmetic
- Need data structures and functions for big integers
-Vectors of 32-bit words
-Routines for allocate/free, convert, print, read/write
-Routines for arithmetic (+-*/mod exp compare)
-See HAC chapter 14
- Libraries for C/FORTAN, classes/methods for C++/Java

BIG integer software

```
UNIX be command
perl
    use Math::BigInt;
    a = Math::BigInt->new("4324567832342")
    c=a +1;
c++
    #include <Integer.h>
    Integer bigi, bigj, bigmod;
    bigi = (bigj*bigi) %bigmod +55;
    cout << bigi
    operator overloading is nice
    no mod exponentiation (means slow)
    really need IntegerMod class? left to the reader
Java
    mport java.math.BigInteger;
    MigInteger includes mod exponentiation
```

CNS Lecture 8-25

DHTest.java

public class Dhtest (
public static void main(Stringll args) throws ToException
BigInteger prime, generator, sharedsecret BigInteger prime, generator, sharedsecret, mysecret
mypublic, hispublic, hissecret
mypublic, hispublic, hissecret;
generator $=$ BigInteger.valueof (3L) ;
prime

mysecret $=$ new BigInteger (1024, new SecureRandom())
mysecrlic = mysecretom (pirime
mypublic = generator.modPow (mysecret, prime)
hissecret $=$ new BigInteger (1024, new SecureRandom (1); ;
hissecret $=$ hissecret.mod (prime);
hissecret $=$ hissecret.mod (prime)
secret, prime) ;

system.out.println ("secret $n+$ sharedsecret.tostring());
,
CNS Lecture 8-26

OpenSSL's Big Number API

\#include <openssl/bn.h>
BIGNUM *BN_new (void);
int BN_add (BIGNUM *r, const BIGNUM *a, const BIGNUM *b) ;
int BN_sub (BIGNUM *r, const BIGNUM *a, const BIGNUM *b);
int BN_mul (BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *ctx);
int BN_mod_mul (BIGNUM *ret, BIGNUM *a, BIGNUM *b, const
int BN_rand (BIGNUM *rnd, int bits, int top, int bottom);
BIGNUM *BN_generate_prime (BIGNUM ret, int bits,int
safe, BIGNUM *add, BIGNUM *rem, void (*callback) (int, int,
void *), void *cb_arg); vole, ${ }^{\text {a }}$, void *cb_arg)
BN_hex2bn() BN_bn2hex ()

- Native assembly language can speed these up
link with libgmp.a

CNS Lecture 8-27

BN_set_word (three, 3) ;
BN_hex2bn(\&mod, defaultmodulostring) ;
BN_print_fp(stdout,mod); printf("\n");
BN_rand(mysecret, 1024,1,1)
BN_nnmod (mysecret, mysecret, mod, ctx) ;
BN_mod_exp (mypublic, three, mysecret, mod, ctx) ;
BN_rand(hissecret, 1024,1,1);
BN_nnmod (hissecret, hissecret, mod, ctx)
BN_mod_exp (hispublic, three, hissecret, mod, ctx)
BN_mod_exp (sharedsecret, mypublic, hissecret, mod, ctx); printf (his key ${ }^{\prime \prime}$ "),
_print_fp(stdout, sharedsecret); printf("\n");
BN_mod_exp (sharedsecret, hispublic, mysecret, mod, ctx)
$\mathrm{p}=\mathrm{BN} _$bn2hex (sharedsecret)
printf("my key $\backslash \mathrm{n}$ \%s $\backslash \mathrm{n}$ ", p)
OPENSSL_free (p);
see
CNS Lecture 8-30

Diffie-Hellman '76 paper	
- described a key agreement system - described public key structure -private/public key (algorithms E_{k} and D_{k}) $E_{k}\left(D_{k}(m)\right)=D_{k}\left(E_{k}(m)\right)=m$ -easy to compute - can't determine E_{k} from D_{k} (nor reverse) -no need for shared secret - sign documents (non-repudiation) - avoid symmetric key problems -- scalability, secret key distribution - suggested looking for one-way trap-door functions $Y=f_{k}(X)$ easy if know X, k $X=f_{k}^{-1}(Y)$ easy if know k and Y $X=f_{k}{ }^{-1}(Y)$ infeasible if know only Y and not k	
CNS Lecture 8-31	Er

Public key authentication

Sign with your private key, verified by receiver with your public key

CNS Lecture 8-34

Public key crypto applications

- Encryption/decryption sender encrypts message with the recipient's public key
Note: attacker can do unlimited chosen-plaintext attacks, and try various guesses at private key to decipher
- Digital signature sender "signs" message with his private key
-Actually encrypts a hash (MD5/SHA) of the message
- Non-repudiation only private key owner could have signed the message
- Key exchange two parties establish a session key

Algorithm	Encryption/Decryption	Digital Signature	Key Exchange	Strength
RSA	Yes	Yes	Yes	Factoring
Elliptic Curve	Yes	Yes	Yes	Elliptics
Diffie-Hellman	No	No	Yes	Discrete log
DSS	No	Yes	No	Discrete log

CNS Lecture 8-36

Digital signatures

- criteria
-signature must depend on message being signed
-must be unique to signer
-easy to generate, verify, and store
-infeasible to forge
can't construct new message for existing signature
can't forge signature for a new message
- sign: encrypt hash with private key
- verify: decrypt hash with public key, re-hash and compare
- legally binding (non-repudiation)
- used for authenticating messages, documents, and keys

CNS Lecture 8-38

RSA algorithm

Security through mathematics

- public modulus n and public key e
n is product of two secret primes p and $q, n=p q$
e is chosen relatively prime to $\phi(n)=(p-1)(q-1)$
- Private key, d $d=e^{-1} \bmod (p-1)(q-1)$
- encryption: $c=m^{e} \operatorname{modn}$
- decryption: $m=c^{d} \bmod n$
- must keep p,q,dsecret

Kef Generation	
Seletep. q ?	p and q bodil pime. p q
Calclutar $n=p \times q$	
Selee mineger e	
Caraclated	$d=c^{1} \bmod \phi(m)$
Public ley	$K U=\{e, n\}$
Pruster cey	$K R=\{d, n\}$

Eneryption	
Plaimert	M<n
Ciplertest	$c=M^{e}(\bmod)$
Deryption	
cipleratast	c
Plantert	$M=C l_{\text {d }}^{\text {mad }}$ (n)

CNS Lecture 8-40

RSATest.java

import java.io.*; import java. security. ${ }^{\text {inf }}$ import java. math. BigInteger

public class RSATest
public static void main(stringll args) throws foException (
Bigintegr BigInteger $n, d, e, m, c, m 1$
// rsa pub (e) and private (d) keys mod n

e = BigInteger.valueof (371);

$m=$ new BigInteger (1024, new SecureRandom () ;
$\mathrm{m}=\mathrm{m} \cdot \bmod (\mathrm{n}) ;$
$\mathrm{c}=\mathrm{m} \cdot \operatorname{modPow}(\mathrm{e}, \mathrm{n})$
$\mathrm{m}_{1}=\mathrm{c}$. modpow (d, n$)$;

,
CNS Lecture 8-45

RSA in perl

warning -- this label is classified as a muntition
have you exported a crypto systan ropar

TRY: echo squeamish ossifrage \| rsa -e 3 7537d365 | rsa -d 4e243e33 7537d365
federal law prohtbits transfer of this label to foretgner

RSA with OpenSSL API

\#include <stdio.h>
\#include <openssl/rsa.h>
\#include <openssl/objects.h>
static const unsigned char tmp16[16]=

$0 \times 34,0 \times 56,0 \times 78,0 \times 9 \mathrm{a}, 0 \times \mathrm{bc}, 0 \times \mathrm{de}, 0 \times 50,0 \times 12$; ;
$\operatorname{main}^{\operatorname{man}}$
RSA *rsa;
int res,
char \star to, buff [4096],
rsa $=$ RSA_generate_key (1024,RSA_3, NULL, NULL);
to $=$ malloc (RSA_size (rsa))
lth = RSA_public_encrypt (sizeof (tmp16), tmp16, to, rsa, RSA_PKCS1_PADDING)
printf("lth $8 \mathrm{~d} \backslash \mathrm{n}$ ", 1 th) ;
lth = RSA_private_decrypt (lth, to, buff,rsa, RSA_PKCS1_PADDING);
RSA_sign (NID_md5,tmp16, sizeof (tmp16), to, \&1th, rsa)
printf ("lth 8 d 1 n", lth);

\}
CNS Lecture 8-46

RSA performance

- key generation slow (e.g., PGP)
- encryption/ decryption 1000 times slower than DES

300 bytes/sec (see OpenSSL speed command)

- e=3 will speed up software
- hardware: $10 \mathrm{Mb} / \mathrm{sec}$
- Use RSA to encrypt session key, then use DES or AES
- Use RSA to encrypt hash of message (signature)
both also result in a plaintext (m) less than n bits $c=m^{e}$ mod n

CNS Lecture 8-48
RSA optimizations
for 512 -bit numbers and larger, slow

- speed up for exponentiation (square and multiply)
- e often set to 3 or 65537 (pub key fast)
- keep p and q with d, do computations mod p and mod q, use
Chinese Remainder Theorem to compute answer mod n
- Calculate the following and keep (secret) with d
d mod $(p-1)$
d mod $(q-1)$
$p^{-1} \bmod q$
$q^{-1} \bmod p$
cNs Lecture $8-49$

Chinese Remainder Theorem (CRT)

Allows us to manipulate BIG numbers in terms of tuples of smaller numbers (\rightarrow faster). Handy in RSA with private key calculations where we know pand q
$n=p q$, want to calculate $b=a^{k} \bmod n$
precalculate $z_{o}=q^{-1} \bmod p z_{1}=p^{-1} \bmod q \quad c_{o}=q z_{o} \operatorname{modn} \quad c_{1}=p z_{1} \operatorname{modn}$
$b_{0}=a^{k} \bmod p$
$b_{1}=a^{k} \bmod q$
$b=\left(b_{0} c_{0}+b_{1} c_{1}\right) \operatorname{modn}$
Example: calculate ($678+973$) mod 1813 using CRI
$\mathrm{n}=\mathrm{pq}$
prime
$\mathrm{n}=1813=\begin{gathered}\text { for } \\ \text { CRT to work) }\end{gathered}$ ($\mathrm{p}=37 \mathrm{q}=49$ (p and q just need to be relatively
$973 \bmod 1813$ equivalent to $(973 \bmod 37,973 \bmod 49)=(11,42)$
678 mod 1813 equivalent to $(678 \bmod 37,678 \bmod 49)=(12,41)$
So: $(11,42)+(12,41)=(23,34)$
To verify, convert back, need (multiplicative inverse)
$\mathrm{u}=\mathrm{p}^{-1} \bmod \mathrm{q}=34$ and $\mathrm{v}=\mathrm{q}^{-1} \bmod \mathrm{p}=4$
$(23,34)=(23 * 34 * 49+34 * 4 * 37) \bmod 1813$
$=(245+1406) \bmod 1813$
$=1651$

CNS Lecture 8-50

Computational complexity big-0

- Time complexity of an algorithm
- Number of operations as a function of size of input
-Matrix multiply for $\mathrm{N} \times \mathrm{N}$ matrix is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
-Brute force of DES is $O\left(2^{56}\right)$
- Algorithm with input size n is:
-Linear if running time is $O(n)$
-Polynomial if $O\left(n^{k}\right)$
- Exponential if $O\left(\mathrm{k}^{h(n)}\right)$
- computationally feasible if polynomial or linear or if n is small

CNS Lecture 8-52

Timing attacks
- note that big integer multiplies take a long time
- If calculating cd mod n, then some modular multiplications may take longer than
others, depending on whether a bit in d is set or not
- need a hi-resolution timer and lots of samples
- discover secret d bit by bit
countermeasures
- quantize all operations (cryptolib)
- add random delay
- blinding
instead of $m=c^{d}$ mod n generate a random r and calculate
$m=r^{-1}\left(c r^{\varepsilon}\right)^{d}$ mod n
The RSA APl's usually pad the message before encrypting to randomize the
ciphertext and limit chosen-cipher text attacks (see OAEP) and PKCS standards.
cNS Lecture 8 - 55

EIGamal

- 1985 public-key scheme, based on discrete log
- like D-H, public: generator g, prime p
- user A picks random X_{A} as private key
calculate public key $\hat{Y}_{A}=g_{A}{ }_{A} \bmod p$
- to encrypt M for user B (public key Y_{B})
pick random k modp
encrypt M as a pair $\left(C_{1}, C_{2}\right)$
$C_{1}=g^{k} \bmod p$
$C_{2}=Y_{B}{ }^{k} M \operatorname{modp}$
- B decrypts with
computes $C_{1}{ }^{p-1-x_{B}}=C_{1}^{-x_{B}}$ modp
$M=C_{2} C_{1}^{-X} \operatorname{modp}$
because $C_{2} C_{1}^{-X_{B}}=g^{k X_{B}} \mathrm{M} g^{-k X_{B}}$
- requires random number for each encryption
- requires 2 exponentiations for each encryption
- message expansion (cipher text twice as big)
- DSS is a variant

CNS Lecture 8. 56

DSA

DSS Digital Signature Standard (FIPS 186, 1994)

- in '82 US solicited public-key algorithms for a standard
- in '91 NIST proposed DSA for DSS
- controversy
- many companies had licensed RSA
-RSA de facto standard
- slower than RSA
-trap-door concern
-not as well tested as RSA (test of time)
- modulus too small (512) -- expanded later
- requires unique secret for each message
- only signature (can't do encryption) \rightarrow exportable ()
- Gov't approved: DES, SHA, DSA, AES
- FIPS 186-2 (2000) digital signatures (DSS, RSA, ECC)

CNS Lecture 8-58

EIGamal signatures

- choose prime p and generator g
- generate random secret x , calculate public key $\mathrm{y}=$ gx $^{\mathrm{x}}$ modp
- public: p.g.y
- $h=$ hash of message
- generate another random secret k relatively prime to p^{-1} (unique for each message)
- signature is (r, s)
$r=g^{k} \bmod p$
$r=(h-x r) k^{-1} \bmod (p-1)$
- Verify: calculate hash h, check if $y^{r} r^{s}=g^{h} \bmod p \quad y^{t r s}=g^{\mathrm{xr}} g^{k(h-x) k^{\wedge} 1}$
- Note
- similarity to D-H
$-r$ independent of message/hash
- doesn't recover hash, just verifies
- must have different random k for each message
- calculating $\mathrm{k}^{-1} \operatorname{modp}$ slow, but can pre-calculate

CNS Lecture 8-60

DSA algorithm

generate prime p (512-1024 bits)

Generate random x, publish $y=g^{x}$ mod p
private: $\mathbf{x}<\boldsymbol{q}(160$ bits $)$
signing (signature (r, s)
generate random $k<q$ (secret)
$\mathrm{r}=\left(\mathrm{g}^{\mathrm{k}} \bmod \mathrm{p}\right) \bmod \mathrm{q}$
$\mathbf{s}=\left(\mathrm{k}^{-1}(\mathrm{H}(\mathrm{m})+\mathrm{xr})\right) \bmod \mathrm{q}$
verifying (ok if $v=r$)
$w=s^{-1} \bmod q$
$=(\mathrm{H}(\mathrm{m}) \mathrm{w}) \bmod q$
g
$=(\mathrm{rw}) \bmod \mathrm{q}$
$v=\left(\left(g^{s} y^{b}\right) \bmod p\right) \bmod q$
verifies hash $H(m)$-- doesn't recover hash

RSA vs DSA signatures

(a) RSA Approach

CNS Lecture 8-62

Time-stamp services

digital notary

- digital signatures assures who and what, but not when
- signed documents should contain "date" but signer could alter time before signing
- need trusted third party
- for privacy, submit hash (actually signed hash) to third party
- third party "publishes" hash log
- PGP time-stamp service
-email document to service
- service returns date/seqno signature
- service publishes seqno/date

CNS Lecture 8-64

signature made $2000 / 03 / 06$ 15:35 GMT
signature made
File has signature. Public key is required to check signature
File has signature. Public key is required to
File 'tst.c.01' has signature, but with no text.
Text is assumed to be in file 'tet.c'.
Good signature from user "Tom Dunigan <thdeorn1.gov>".
signature made 2000/03/06 15:11 GMT
CNS Lecture 8-65

Next time ...	
ECC	
PKCS	
sshand pgp	
CNS Lecture 8. 67	

