
1

CNS
Lecture 8

Security through mathematics

Number theory

Diffie-Hellman

Public key crypto

RSA

El Gamal

DSA

Assignments

midterm cs594 paper

Lectures

1. Risk, viruses

2. UNIX vulnerabilities

3. Authentication & hashing

4. Random #s classical crypto

5. Block ciphers DES, RC5

6. AES, stream ciphers RC4, LFSR

7. MIDTERM �

8. Public key crypto RSA, D-H

9. ECC, ssh/pgp

10. PKI, SSL

spring break ☺

11. Network vulnerabilities

12. Network defenses, IDS, firewalls

13. IPsec, VPN, Kerberos, secure OS

14. Crypto APIs

15. review

CNS Lecture 8 - 2

In the news

• Dept of Commerce machines broken into multiple times (root kits)Dept of Commerce machines broken into multiple times (root kits)Dept of Commerce machines broken into multiple times (root kits)Dept of Commerce machines broken into multiple times (root kits) by Chinese by Chinese by Chinese by Chinese
hackers hackers hackers hackers – going to replace all hardware and software!going to replace all hardware and software!going to replace all hardware and software!going to replace all hardware and software!

• McAfee McAfee McAfee McAfee epolicyepolicyepolicyepolicy buffer overflowbuffer overflowbuffer overflowbuffer overflow

• AOLAOLAOLAOL’’’’s s s s ““““youyouyouyou’’’’ve got picturesve got picturesve got picturesve got pictures”””” buffer overflowbuffer overflowbuffer overflowbuffer overflow

• 120 new vulnerabilities reported this week (SANS)120 new vulnerabilities reported this week (SANS)120 new vulnerabilities reported this week (SANS)120 new vulnerabilities reported this week (SANS)

CNS Lecture 8 - 3

You are here …

Attacks & DefensesAttacks & DefensesAttacks & DefensesAttacks & Defenses

• Risk assessmentRisk assessmentRisk assessmentRisk assessment����

• VirusesVirusesVirusesViruses����

• Unix securityUnix securityUnix securityUnix security����

• authenticationauthenticationauthenticationauthentication����

• Network securityNetwork securityNetwork securityNetwork security
Firewalls,vpn,IPsec,IDSFirewalls,vpn,IPsec,IDSFirewalls,vpn,IPsec,IDSFirewalls,vpn,IPsec,IDS

• ForensicsForensicsForensicsForensics

CryptographyCryptographyCryptographyCryptography

•Random numbersRandom numbersRandom numbersRandom numbers����

•Hash functionsHash functionsHash functionsHash functions����

MD5, SHA,RIPEMDMD5, SHA,RIPEMDMD5, SHA,RIPEMDMD5, SHA,RIPEMD

•Classical + Classical + Classical + Classical + stegostegostegostego����

•Number theoryNumber theoryNumber theoryNumber theory

•Symmetric keySymmetric keySymmetric keySymmetric key����

DES, DES, DES, DES, RijndaelRijndaelRijndaelRijndael, RC5, RC5, RC5, RC5

•Public keyPublic keyPublic keyPublic key

RSA, DSA, DRSA, DSA, DRSA, DSA, DRSA, DSA, D----H,ECCH,ECCH,ECCH,ECC

Applied cryptoApplied cryptoApplied cryptoApplied crypto

•SSHSSHSSHSSH

•PGPPGPPGPPGP

•S/MimeS/MimeS/MimeS/Mime

•SSLSSLSSLSSL

•KerberosKerberosKerberosKerberos

•IPsecIPsecIPsecIPsec

CNS Lecture 8 - 4

The mathematics of cryptography

Finite (discrete) mathematics

•Modular arithmetic (shift ciphers, polyalphabets, Hill cipher)

•Primes and prime factors, greatest common divisor, BIG integer libraries

•Linear transforms (row/column transpositions, linear algebra)

•Exponentiation/discrete logs (D-H, RSA)

•Polynomial arithmetic (CRC, AES, LFSR, ECC)

•Elliptic curves (ECC)

CNS Lecture 8 - 5

Number theory

Security through mathematicsSecurity through mathematicsSecurity through mathematicsSecurity through mathematics

why? why? why? why? -------- basis for public key cryptographybasis for public key cryptographybasis for public key cryptographybasis for public key cryptography

not permutations or substitutionsnot permutations or substitutionsnot permutations or substitutionsnot permutations or substitutions

modular arithmeticmodular arithmeticmodular arithmeticmodular arithmetic

hard problems (factoring, discrete logs)hard problems (factoring, discrete logs)hard problems (factoring, discrete logs)hard problems (factoring, discrete logs)

CNS Lecture 8 - 6

Number theory

primeprimeprimeprime -------- number only divisible by 1 or itself number only divisible by 1 or itself number only divisible by 1 or itself number only divisible by 1 or itself

any integer can be expressed as the product of prime powers any integer can be expressed as the product of prime powers any integer can be expressed as the product of prime powers any integer can be expressed as the product of prime powers
(fundamental theorem of arithmetic)(fundamental theorem of arithmetic)(fundamental theorem of arithmetic)(fundamental theorem of arithmetic)

kaaa

kpppa ...21
21=

3600 = 24 x 32 x 52

2

CNS Lecture 8 - 7

Modular arithmetic

• modmodmodmod (congruence), remainder after dividing(congruence), remainder after dividing(congruence), remainder after dividing(congruence), remainder after dividing

• if a if a if a if a modmodmodmod n = b then a = n = b then a = n = b then a = n = b then a = knknknkn +b +b +b +b

• 11 11 11 11 modmodmodmod 3 = 5 3 = 5 3 = 5 3 = 5 modmodmodmod 3 = 23 = 23 = 23 = 2

• modular arithmetic (+,*)on nonmodular arithmetic (+,*)on nonmodular arithmetic (+,*)on nonmodular arithmetic (+,*)on non----negative integers Znegative integers Znegative integers Znegative integers Znnnn

– associativeassociativeassociativeassociative a+ (b +c) modmodmodmod n = (a+b) +c modmodmodmod n

– commutative commutative commutative commutative ab modmodmodmod n = ba modmodmodmod n

–distributivedistributivedistributivedistributive a(b+c)modmodmodmod n = (ab + ac) modmodmodmod n

– reducible ab modmodmodmod n = ((a modmodmodmod n)(b modmodmodmod n)) modmodmodmod n

–At least a commutative ring

• Additive identity: 5+0 = 5Additive identity: 5+0 = 5Additive identity: 5+0 = 5Additive identity: 5+0 = 5

• additive inverseadditive inverseadditive inverseadditive inverse: (5 + ?) : (5 + ?) : (5 + ?) : (5 + ?) mod mod mod mod 8 = 08 = 08 = 08 = 0

lets us work with smaller numberslets us work with smaller numberslets us work with smaller numberslets us work with smaller numbers

CNS Lecture 8 - 8

multiplication

• multiplicative inversemultiplicative inversemultiplicative inversemultiplicative inverse (x(x(x(x----1111 x) x) x) x) modmodmodmod n = 1 n = 1 n = 1 n = 1

3*9 mod 26 = 13*9 mod 26 = 13*9 mod 26 = 13*9 mod 26 = 1

4*x mod 8 = 1 ? 4*x mod 8 = 1 ? 4*x mod 8 = 1 ? 4*x mod 8 = 1 ?

• only numbers only numbers only numbers only numbers relatively primerelatively primerelatively primerelatively prime to n to n to n to n
have multiplicative inverse (Zhave multiplicative inverse (Zhave multiplicative inverse (Zhave multiplicative inverse (Zn*n*n*n*))))

• relatively primerelatively primerelatively primerelatively prime���� don't share don't share don't share don't share
any common factorsany common factorsany common factorsany common factors

• if p is prime, if p is prime, if p is prime, if p is prime, all all all all elements have elements have elements have elements have
multiplicative inverse (except 0)multiplicative inverse (except 0)multiplicative inverse (except 0)multiplicative inverse (except 0)

ZZZZpppp is a fieldis a fieldis a fieldis a field

CNS Lecture 8 - 9

Euler’s totient

totienttotienttotienttotient functionfunctionfunctionfunction
φφφφ(n) how many numbers relatively prime to n(n) how many numbers relatively prime to n(n) how many numbers relatively prime to n(n) how many numbers relatively prime to n

φφφφ(6)=2 (1 and 5)(6)=2 (1 and 5)(6)=2 (1 and 5)(6)=2 (1 and 5)
φφφφ(7)=6 (1 thru 6) since 7 is prime, (7)=6 (1 thru 6) since 7 is prime, (7)=6 (1 thru 6) since 7 is prime, (7)=6 (1 thru 6) since 7 is prime,
φφφφ(8)=4 (1,3,5,7)(8)=4 (1,3,5,7)(8)=4 (1,3,5,7)(8)=4 (1,3,5,7)

If p is prime, If p is prime, If p is prime, If p is prime, φφφφ(p) = p(p) = p(p) = p(p) = p----1111

What is φφφφ(n) if n= pq, and p and q are prime????
have to factor n to calculate have to factor n to calculate have to factor n to calculate have to factor n to calculate totienttotienttotienttotient

φφφφ(n) = φφφφ(p) φφφφ(q) = (p-1)(q-1)

Euler’s theorem: If a and n are relatively prime, aφφφφ(n) = 1 mod n

a=3; n=10; φ(10)=4; 34 mod 10 = 81 mod 10 = 1

CNS Lecture 8 - 10

Modular shortcuts

• abababab modmodmodmod n = ((a n = ((a n = ((a n = ((a modmodmodmod n)(b n)(b n)(b n)(b modmodmodmod n)) n)) n)) n)) modmodmodmod nnnn

• exponentiation exponentiation exponentiation exponentiation aaaabbbb modmodmodmod n, use squaringn, use squaringn, use squaringn, use squaring

x16 4 multiplications

x x x2 x2 x4 x4 x8 x8

–both: a8mod n = ((a2 mod n) 2 mod n)2 mod n

rather than 7 multiplies, and one huge division

• Chinese Remainder Theorem (CRT)Chinese Remainder Theorem (CRT)Chinese Remainder Theorem (CRT)Chinese Remainder Theorem (CRT)

–do arithmetic mod factors of n (faster)

–handy in RSA (example later)

CNS Lecture 8 - 11

Euclid’s algorithm

greatest common divisorgreatest common divisorgreatest common divisorgreatest common divisor

• gcd(a.bgcd(a.bgcd(a.bgcd(a.b) =) =) =) = gcd(bgcd(bgcd(bgcd(b, a , a , a , a modmodmodmod b)b)b)b)

• gcd(12,8)=4 and gcd(12,25)=1gcd(12,8)=4 and gcd(12,25)=1gcd(12,8)=4 and gcd(12,25)=1gcd(12,8)=4 and gcd(12,25)=1

• relatively primerelatively primerelatively primerelatively prime if if if if gcdgcdgcdgcd is 1is 1is 1is 1

• extended extended extended extended gcdgcdgcdgcd can be used to find multiplicative inverse (if it can be used to find multiplicative inverse (if it can be used to find multiplicative inverse (if it can be used to find multiplicative inverse (if it
exists)exists)exists)exists)

–used in IDEA and CRT for RSA

see see see see gcd.cgcd.cgcd.cgcd.c (extended (extended (extended (extended euclideuclideuclideuclid))))

gcd(124,16) = gcd(16, 124 mod 16)

124 mod 16 = 12

16 mod 12 = 4

12 mod 4 = 0

gcd is 4

CNS Lecture 8 - 12

primes

Prime Number theoremPrime Number theoremPrime Number theoremPrime Number theorem::::

number of primes < n asymptotic to number of primes < n asymptotic to number of primes < n asymptotic to number of primes < n asymptotic to n/(lnn/(lnn/(lnn/(ln n)n)n)n)

• primes < 1,000,000 = 78,498 < 1 billion = 51 millionprimes < 1,000,000 = 78,498 < 1 billion = 51 millionprimes < 1,000,000 = 78,498 < 1 billion = 51 millionprimes < 1,000,000 = 78,498 < 1 billion = 51 million

• primes < 2primes < 2primes < 2primes < 2512512512512 ≅≅≅≅ 10101010150150150150 -------- not that many atoms in the universenot that many atoms in the universenot that many atoms in the universenot that many atoms in the universe

generating primesgenerating primesgenerating primesgenerating primes

• need large primes for key generation (RSA,DSA, Dneed large primes for key generation (RSA,DSA, Dneed large primes for key generation (RSA,DSA, Dneed large primes for key generation (RSA,DSA, D----H)H)H)H)

• need to do only once (usually)need to do only once (usually)need to do only once (usually)need to do only once (usually)

• usually part of crypto library (not your problem)usually part of crypto library (not your problem)usually part of crypto library (not your problem)usually part of crypto library (not your problem)

• ``Is n prime?'' easier than ``What are the factors of n?''``Is n prime?'' easier than ``What are the factors of n?''``Is n prime?'' easier than ``What are the factors of n?''``Is n prime?'' easier than ``What are the factors of n?''

Crypto Toolkit

secret-key crypto �

public-key crypto

big-number math

random numbers�

prime numbers

hash functions�

3

CNS Lecture 8 - 13

Primality testing Is p primeIs p primeIs p primeIs p prime????

• infeasible to check all factors for really BIG integer infeasible to check all factors for really BIG integer infeasible to check all factors for really BIG integer infeasible to check all factors for really BIG integer

• can't determine absolutely if big number is prime, but can test can't determine absolutely if big number is prime, but can test can't determine absolutely if big number is prime, but can test can't determine absolutely if big number is prime, but can test for for for for ““““highly probablehighly probablehighly probablehighly probable””””

• Fermat's theoremFermat's theoremFermat's theoremFermat's theorem

if p is prime and if p is prime and if p is prime and if p is prime and a is not divisible by pa is not divisible by pa is not divisible by pa is not divisible by p (relatively prime) then (relatively prime) then (relatively prime) then (relatively prime) then a a a a pppp----1111 = 1= 1= 1= 1 modmodmodmod pppp

• Lehman variationLehman variationLehman variationLehman variation of Fermat's theoremof Fermat's theoremof Fermat's theoremof Fermat's theorem
choose random a, if p is prime, aaaapppp----1111 = 1 = 1 = 1 = 1 modmodmodmod pppp

exceptions: Carmichael numbers, e.g., p= 561 = 3 x 11 x 17 (pseudopseudopseudopseudo----primesprimesprimesprimes)

• RivestRivestRivestRivest variation variation variation variation of Fermat's 2of Fermat's 2of Fermat's 2of Fermat's 2pppp----1111 = 1 = 1 = 1 = 1 modmodmodmod pppp
true if p is prime, but there are pseudo-primes n that meet the test.

For 256-bit number (2256), ‘bout 1074 primes and 1052 pseudo-primes,

so chance of 1 in 1022 that p satisfies the test and is not prime

• MillerMillerMillerMiller----RabinRabinRabinRabin

if there is a solution to xif there is a solution to xif there is a solution to xif there is a solution to x2222 = 1 = 1 = 1 = 1 modmodmodmod p other than 1 and p other than 1 and p other than 1 and p other than 1 and ----1, then p is NOT prime1, then p is NOT prime1, then p is NOT prime1, then p is NOT prime

So try lots of random So try lots of random So try lots of random So try lots of random x'sx'sx'sx's

probability p is NOT prime after k successful tests, probability p is NOT prime after k successful tests, probability p is NOT prime after k successful tests, probability p is NOT prime after k successful tests, (1/4) (1/4) (1/4) (1/4) kkkk

See Schneier, Applied Cryptography

CNS Lecture 8 - 14

Finding a prime

1.1.1.1. generate generate generate generate randomrandomrandomrandom nnnn----bit number pbit number pbit number pbit number p

2.2.2.2. set hiset hiset hiset hi----bit to 1, lowbit to 1, lowbit to 1, lowbit to 1, low----bit to 1bit to 1bit to 1bit to 1

3.3.3.3. verify p is not divisible by first 2048 primesverify p is not divisible by first 2048 primesverify p is not divisible by first 2048 primesverify p is not divisible by first 2048 primes

4.4.4.4. perform Millerperform Millerperform Millerperform Miller----Rabin for some random Rabin for some random Rabin for some random Rabin for some random aaaa. If p passes, generate . If p passes, generate . If p passes, generate . If p passes, generate
another another another another aaaa, and repeat test (5 times?). If it fails, generate a , and repeat test (5 times?). If it fails, generate a , and repeat test (5 times?). If it fails, generate a , and repeat test (5 times?). If it fails, generate a
new p and go back to step 1. new p and go back to step 1. new p and go back to step 1. new p and go back to step 1.

roughly what roughly what roughly what roughly what OOOOpenSSLpenSSLpenSSLpenSSL liblibliblib does in does in does in does in BN_generate_primeBN_generate_primeBN_generate_primeBN_generate_prime ()()()()

density of primes: density of primes: density of primes: density of primes:
– proportion of positive integers < x that are prime is roughly 2/ ln x

– for 512-bit n (2 512) can find a prime in 177 tries

– this is what takes time when you first generate your PGP keys

CNS Lecture 8 - 15

Problems with symmetric key crypto

• Symmetric key crypto (DES, AES) needs preSymmetric key crypto (DES, AES) needs preSymmetric key crypto (DES, AES) needs preSymmetric key crypto (DES, AES) needs pre----shared keyshared keyshared keyshared key

• How do Alice and Bob get their key?How do Alice and Bob get their key?How do Alice and Bob get their key?How do Alice and Bob get their key?

• For N people, need NFor N people, need NFor N people, need NFor N people, need N2222 sets of shared keyssets of shared keyssets of shared keyssets of shared keys

• Mathematics will give us some other choicesMathematics will give us some other choicesMathematics will give us some other choicesMathematics will give us some other choices

–Diffie-Hellman (’76) will allow Alice and Bob to establish a shared key

–Public key crypto (RSA, ECC) will allow Alice to publish her public key

CNS Lecture 8 - 16

Diffie-Hellman

• method for two parties to establish a secret method for two parties to establish a secret method for two parties to establish a secret method for two parties to establish a secret
key with no previous shared secrets key with no previous shared secrets key with no previous shared secrets key with no previous shared secrets -------- cool!cool!cool!cool!

• doesn't do encryption or signaturesdoesn't do encryption or signaturesdoesn't do encryption or signaturesdoesn't do encryption or signatures

algorithmalgorithmalgorithmalgorithm

• publish a publish a publish a publish a generatorgeneratorgeneratorgenerator g and prime modulus qg and prime modulus qg and prime modulus qg and prime modulus q

• Alice generates Alice generates Alice generates Alice generates randomrandomrandomrandom x, and calculates x, and calculates x, and calculates x, and calculates

X = X = X = X = ggggxxxx mod qmod qmod qmod q

• Bob generates Bob generates Bob generates Bob generates randomrandomrandomrandom y, and calculates y, and calculates y, and calculates y, and calculates

Y = Y = Y = Y = ggggyyyymod qmod qmod qmod q

• keep x and y secretkeep x and y secretkeep x and y secretkeep x and y secret (private keys)(private keys)(private keys)(private keys)

• they exchange X and Y (public keys)they exchange X and Y (public keys)they exchange X and Y (public keys)they exchange X and Y (public keys)

• they calculate they calculate they calculate they calculate XXXXyyyy and and and and YYYYxxxx mod q to get kmod q to get kmod q to get kmod q to get k

k = k = k = k = XXXXyyyy mod q = mod q = mod q = mod q = ggggxyxyxyxy mod qmod qmod qmod q

k = k = k = k = YYYYxxxx mod q = mod q = mod q = mod q = ggggyxyxyxyx mod qmod qmod qmod q

• now they can use k for DES or whatevernow they can use k for DES or whatevernow they can use k for DES or whatevernow they can use k for DES or whatever

• Need good randomnessNeed good randomnessNeed good randomnessNeed good randomness

generators primitive roots

If p is prime, then g is a generator for Zp* , if gi

generates all the members of Zp* (0 ≤ i ≤ φ(p) -1)

There are φ(φ(p)) generators.
Guess and test to find them.

a = 6 is a generator for Z13*

i 0 1 2 3 4 5 6 7 8 9 10 11
6i mod 13 1 6 10 8 9 2 12 7 3 5 4 11

CNS Lecture 8 - 17

Primitive roots/generators

• Primitive roots of prime number, 19 Primitive roots of prime number, 19 Primitive roots of prime number, 19 Primitive roots of prime number, 19

–There should be φφφφ(φφφφ(19)) = φφφφ(18) = 6 of them

–Roots are 2, 3, 10, 13, 14, and 15

–When doing exponentiation mod p, using a primitive root insures
full period (D-H, ElGamal)

CNS Lecture 8 - 18

D-H examples

• p =11 and g =2 p =11 and g =2 p =11 and g =2 p =11 and g =2

• Alice gets random x = 4, Bob y=6Alice gets random x = 4, Bob y=6Alice gets random x = 4, Bob y=6Alice gets random x = 4, Bob y=6

• Alice X = 2Alice X = 2Alice X = 2Alice X = 24444 mod 11 = 5mod 11 = 5mod 11 = 5mod 11 = 5

• Bob Y = 2Bob Y = 2Bob Y = 2Bob Y = 26666 mod 11 = 9mod 11 = 9mod 11 = 9mod 11 = 9

• exchange 5 and 9 (Eve can observer this)exchange 5 and 9 (Eve can observer this)exchange 5 and 9 (Eve can observer this)exchange 5 and 9 (Eve can observer this)

• Alice Alice Alice Alice YYYYxxxx mod 11 = 9mod 11 = 9mod 11 = 9mod 11 = 94444 = 6561 = 5 mod 11= 6561 = 5 mod 11= 6561 = 5 mod 11= 6561 = 5 mod 11

• Bob Bob Bob Bob XXXXyyyy mod 11 = 5mod 11 = 5mod 11 = 5mod 11 = 56666 = 15625 = 5 mod 11= 15625 = 5 mod 11= 15625 = 5 mod 11= 15625 = 5 mod 11

• k =5k =5k =5k =5

UNIX example with bc using

p=97 g=5 a=36 b=58

(5^36)%97
50
(5^58)%97
44
(50^58)%97
75
(44^36)%97
75

4

CNS Lecture 8 - 19

D-H uses

Used to generate session keys between two parties inUsed to generate session keys between two parties inUsed to generate session keys between two parties inUsed to generate session keys between two parties in

• Netscape (SSL)Netscape (SSL)Netscape (SSL)Netscape (SSL)

• Secure PVMSecure PVMSecure PVMSecure PVM

• stelstelstelstel (secure TELNET)(secure TELNET)(secure TELNET)(secure TELNET)

• SKIP, ISAKMP, GKMPSKIP, ISAKMP, GKMPSKIP, ISAKMP, GKMPSKIP, ISAKMP, GKMP

• Cisco encrypting routersCisco encrypting routersCisco encrypting routersCisco encrypting routers

• nautilusnautilusnautilusnautilus

• Sun secure RPC (Sun secure RPC (Sun secure RPC (Sun secure RPC (keyservkeyservkeyservkeyserv))))

• variation: publish your ``public key'' Y, then Bob wouldn't havevariation: publish your ``public key'' Y, then Bob wouldn't havevariation: publish your ``public key'' Y, then Bob wouldn't havevariation: publish your ``public key'' Y, then Bob wouldn't have to be online when to be online when to be online when to be online when
Alice wants to send him a message encrypted with Y (SKIP)Alice wants to send him a message encrypted with Y (SKIP)Alice wants to send him a message encrypted with Y (SKIP)Alice wants to send him a message encrypted with Y (SKIP)

CNS Lecture 8 - 20

D-H strengths

• easy to calculate easy to calculate easy to calculate easy to calculate ggggxxxxmod pmod pmod pmod p

• Eve can capture X and Y, but infeasible to do Eve can capture X and Y, but infeasible to do Eve can capture X and Y, but infeasible to do Eve can capture X and Y, but infeasible to do discrete logdiscrete logdiscrete logdiscrete log, find x given X, find x given X, find x given X, find x given X

• choose choose choose choose bigbigbigbig (1024 bits) prime p(1024 bits) prime p(1024 bits) prime p(1024 bits) prime p

• nice if (pnice if (pnice if (pnice if (p----1)/2 is also prime (1)/2 is also prime (1)/2 is also prime (1)/2 is also prime (strong primestrong primestrong primestrong prime))))
• find g that is generator mod p, that is, find g that is generator mod p, that is, find g that is generator mod p, that is, find g that is generator mod p, that is, ggggaaaa will generate all elements (1 to pwill generate all elements (1 to pwill generate all elements (1 to pwill generate all elements (1 to p----1)1)1)1)

e.g., 2 is a generator mod 11e.g., 2 is a generator mod 11e.g., 2 is a generator mod 11e.g., 2 is a generator mod 11

–given p, there are ways to find g

• you can use published p, g pairsyou can use published p, g pairsyou can use published p, g pairsyou can use published p, g pairs

• need good random number generator (need good random number generator (need good random number generator (need good random number generator (bigbigbigbig integers) for secrets x and yintegers) for secrets x and yintegers) for secrets x and yintegers) for secrets x and y

• great for session keys, perfect forward secrecygreat for session keys, perfect forward secrecygreat for session keys, perfect forward secrecygreat for session keys, perfect forward secrecy

• strong against passive (offline) attacksstrong against passive (offline) attacksstrong against passive (offline) attacksstrong against passive (offline) attacks

discrete logs

CNS Lecture 8 - 21

D-H weakness

• vulnerable to active attack (Trudy in the middle)vulnerable to active attack (Trudy in the middle)vulnerable to active attack (Trudy in the middle)vulnerable to active attack (Trudy in the middle)

• no authentication (not sure who you're talking to)no authentication (not sure who you're talking to)no authentication (not sure who you're talking to)no authentication (not sure who you're talking to)

Alice, Bob, Trudy know p and g

Alice and Bob think they are exchanging with each other

Trudy, in the middle, does exchange with each

Trudy establishes KAY and KBX

Trudy can decrypt, re-encrypt and relay, or make changes!

loss of privacy and integrity

Alice Trudy Bob
A X

Y B

CNS Lecture 8 - 22

countermeasures

• shared secret (STEL, shared secret (STEL, shared secret (STEL, shared secret (STEL,
....stel_secretstel_secretstel_secretstel_secret), e.g., use it to), e.g., use it to), e.g., use it to), e.g., use it to
encrypt K in a messageencrypt K in a messageencrypt K in a messageencrypt K in a message

• sign key exchange with private key sign key exchange with private key sign key exchange with private key sign key exchange with private key
(GKMP, ISAKMP, Cisco's (GKMP, ISAKMP, Cisco's (GKMP, ISAKMP, Cisco's (GKMP, ISAKMP, Cisco's
encrypting routers), use RSA or encrypting routers), use RSA or encrypting routers), use RSA or encrypting routers), use RSA or
DSADSADSADSA

• BellovinBellovinBellovinBellovin----Merritt encrypt DMerritt encrypt DMerritt encrypt DMerritt encrypt D----H H H H
exchange with shared secret (EKE)exchange with shared secret (EKE)exchange with shared secret (EKE)exchange with shared secret (EKE)

• SPEKESPEKESPEKESPEKE

• Assignment 8?Assignment 8?Assignment 8?Assignment 8?

EKE (mutual authentication)

•Alice and Bob share password S

•Alice calculates X, sends X encrypted with S

•Bob calculates Y, receives X, decrypts with S,

and calculates K

•Bob sends Y encrypted with S and a challenge

R encrypted with K

•Alice decrypts Y, calculates K, decrypts

challenge R

•Alice generates challenge T and sends R and T

encrypted with K

•Bob decrypts challenges, and sends back T

encrypted with K

SPEKE – licensed, mutual authentication

shared password S, huge prime p where

(p-1)/2 also prime

•Alice sends A=S2x mod p

•Bob sends B=S2y mod p

•each calculate K = A2y = B2x

•Bob sends hash(hash(K))

•Alice sends hash(K)

•each verify hashes

CNS Lecture 8 - 23

Implementing D-H

• need random numbersneed random numbersneed random numbersneed random numbers

• may also need to find prime and generator (use known ones)may also need to find prime and generator (use known ones)may also need to find prime and generator (use known ones)may also need to find prime and generator (use known ones)

• want want want want bigbigbigbig prime (1024 bits)prime (1024 bits)prime (1024 bits)prime (1024 bits)

• need need need need multiprecisionmultiprecisionmultiprecisionmultiprecision integer library (UNIX mp, integer library (UNIX mp, integer library (UNIX mp, integer library (UNIX mp, ----lssllssllssllssl, GNU , GNU , GNU , GNU gmpgmpgmpgmp))))

see example see example see example see example dhtest.cdhtest.cdhtest.cdhtest.c

or or or or perlperlperlperl BigIntBigIntBigIntBigInt, or C++ Integer, or Java , or C++ Integer, or Java , or C++ Integer, or Java , or C++ Integer, or Java BigIntegerBigIntegerBigIntegerBigInteger

Crypto Toolkit

secret-key crypto �

public-key crypto

big-number math

random numbers�

prime numbers �

hash functions�

CNS Lecture 8 - 24

BIG integer arithmetic

• Need software to do arithmetic on 1000Need software to do arithmetic on 1000Need software to do arithmetic on 1000Need software to do arithmetic on 1000----bit (100bit (100bit (100bit (100’’’’s of digits) s of digits) s of digits) s of digits)
numbersnumbersnumbersnumbers

• CPUCPUCPUCPU’’’’s like to do 32s like to do 32s like to do 32s like to do 32----bit integer arithmeticbit integer arithmeticbit integer arithmeticbit integer arithmetic

• Need data structures and functions for big integersNeed data structures and functions for big integersNeed data structures and functions for big integersNeed data structures and functions for big integers

–Vectors of 32-bit words
–Routines for allocate/free, convert, print, read/write
–Routines for arithmetic (+ - * / mod exp compare)

–See HAC chapter 14

• Libraries for C/FORTAN, classes/methods for C++/JavaLibraries for C/FORTAN, classes/methods for C++/JavaLibraries for C/FORTAN, classes/methods for C++/JavaLibraries for C/FORTAN, classes/methods for C++/Java

5

CNS Lecture 8 - 25

BIG integer software

UNIX bc command

perl
use Math::BigInt;

a = Math::BigInt->new("4324567832342");
c = a +1;
print c;

C++
#include <Integer.h>

Integer bigi, bigj, bigmod;
bigi = (bigj*bigi)%bigmod +55;
cout << bigi;

operator overloading is nice
no mod exponentiation (means slow)
really need IntegerMod class ? left to the reader

Java
import java.math.BigInteger;
BigInteger includes mod exponentiation

CNS Lecture 8 - 26

DHTest.java
import java.io.*;
import java.security.*;
import java.math.BigInteger;

public class DHTest {
public static void main(String[] args) throws IOExc eption {
BigInteger prime,generator, sharedsecret, mysecret,

mypublic, hispublic, hissecret;

generator = BigInteger.valueOf(3L);
prime = new

BigInteger("106007938378470955024375194787110097352 8064140866308335195856484766623980344
931057739647410243591579519017104566785358230810944 2172042019236265927024041691035249779
046021175308158513569425084317265969515883790351094 2872312899367927109380933811222002873
447475498685844537943400748484227570055775161033105 076319");

mysecret = new BigInteger(1024, new SecureRandom());
mysecret = mysecret.mod(prime);
mypublic = generator.modPow(mysecret,prime);

hissecret = new BigInteger(1024, new SecureRandom()) ;
hissecret = hissecret.mod(prime);
hispublic = generator.modPow(hissecret,prime);

sharedsecret = hispublic.modPow(mysecret,prime);
System.out.println("secret " + sharedsecret.toString ());
sharedsecret = mypublic.modPow(hissecret,prime);
System.out.println("secret " + sharedsecret.toString ());

}
}

CNS Lecture 8 - 27

BIG integer software (C)

GNU'sGNU'sGNU'sGNU's MP libraryMP libraryMP libraryMP library
#include "gmp.h"

mpz_t x, y, z;

void mpz_init (mpz_t integer)

void mpz_set_ui (mpz_t rop, unsigned long int op)

int mpz_set_str (mpz_t rop, char *str, int base)

void mpz_powm (mpz_t rop, mpz_t base, mpz_t exp, mpz_t m od)

void mpz_random (mpz_t rop, mp_size_t max_size)

char * mpz_get_str (char *str, int base, mpz_t op)

link with link with link with link with libgmp.alibgmp.alibgmp.alibgmp.a

CNS Lecture 8 - 28

OpenSSL’s Big Number API

#include <openssl/bn.h>

BIGNUM *BN_new(void);
int BN_add(BIGNUM *r, const BIGNUM *a, const BIGNUM * b);
int BN_sub(BIGNUM *r, const BIGNUM *a, const BIGNUM * b);
int BN_mul(BIGNUM *r, BIGNUM *a, BIGNUM *b, BN_CTX *c tx);
int BN_mod_mul(BIGNUM *ret, BIGNUM *a, BIGNUM *b, con st

BIGNUM *m, BN_CTX *ctx);
int BN_rand(BIGNUM *rnd, int bits, int top, int bottom);
BIGNUM *BN_generate_prime(BIGNUM *ret, int bits,int

safe,BIGNUM *add, BIGNUM *rem, void (*callback)(int, int,
void *), void *cb_arg);

BN_hex2bn() BN_bn2hex()

• Native assembly language can speed these upNative assembly language can speed these upNative assembly language can speed these upNative assembly language can speed these up

CNS Lecture 8 - 29

Diffie Hellman example (OpenSSL lib)
/* gcc -o dhtest dhtest.c -lssl */
#include <stdio.h>
#include <openssl/bn.h>
/* 1024 bits modulus */
char *defaultmodulostring = "\
96F5D737535D8BC982698A80AB91DAE28E84E2982071998880C 736B5\
695AF14D015401A942186B865496ECBECAFE964A5E70B7031F5 756C0\
60AD53528687F4FBFF059150D529638C11FA6FAB6A58785DBD6 2D73D\
1001014BE3EA53E97D43944F1EF83885196E5BCDD4098744B76 73B54\
BA2EB1FDB29ED2C3BA3AD8644FAFF05F";

main()
{

BIGNUM *mod, *three, *sharedsecret, *mysecret, *myp ublic, *hispublic,
*hissecret;

BN_CTX *ctx;
char *p;

mod = BN_new();
three = BN_new();
sharedsecret = BN_new();
mysecret = BN_new();
mypublic = BN_new();
hispublic = BN_new();
hissecret = BN_new();
ctx = BN_CTX_new();

CNS Lecture 8 - 30

BN_set_word(three,3);
BN_hex2bn(&mod,defaultmodulostring);
BN_print_fp(stdout,mod); printf("\n");

BN_rand(mysecret,1024,1,1);
BN_nnmod(mysecret,mysecret,mod,ctx);
BN_mod_exp(mypublic,three,mysecret,mod,ctx);

BN_rand(hissecret,1024,1,1);
BN_nnmod(hissecret,hissecret,mod,ctx);
BN_mod_exp(hispublic,three,hissecret,mod,ctx);
BN_mod_exp(sharedsecret,mypublic,hissecret,mod,ctx) ;

printf(“his key\n”);
BN_print_fp(stdout,sharedsecret); printf("\n");

BN_mod_exp(sharedsecret,hispublic,mysecret,mod,ctx) ;
p= BN_bn2hex(sharedsecret);

printf(“my key\n %s \n”,p);
OPENSSL_free(p);

See ~dunigan/cns06/dhtest.c

6

CNS Lecture 8 - 31

Diffie-Hellman ’76 paper

• described a key agreement system described a key agreement system described a key agreement system described a key agreement system
• described public key structuredescribed public key structuredescribed public key structuredescribed public key structure

–private/public key (algorithms Ek and Dk)
Ek(Dk(m)) = Dk(Ek(m)) = m

–easy to compute
–can't determine Ek from Dk (nor reverse)
–no need for shared secret
–sign documents (non-repudiation)
–avoid symmetric key problems -- scalability, secret key distribution

• suggested looking for onesuggested looking for onesuggested looking for onesuggested looking for one----way trapway trapway trapway trap----door functionsdoor functionsdoor functionsdoor functions
Y = fk(X) easy if know X, k
X =fk

-1(Y) easy if know k and Y
X =fk

-1(Y) infeasible if know only Y and not k

CNS Lecture 8 - 32

Public key crypto

CNS Lecture 8 - 33

Public key secrecy

Note that you have Alice’s public key, so you can make unlimited chosen

plain-text attacks to guess private key.

Or steal private key file and do dictionary attack on the passphrase used to

encrypt the private key file.

CNS Lecture 8 - 34

Public key authentication

Sign with your private key, verified by receiver with your public key

CNS Lecture 8 - 35

Public key: sign and encrypt

Public key can be published (emailed, LDAP, web page), solves

symmetric key distribution problem!

CNS Lecture 8 - 36

Public key crypto applications

• Encryption/decryptionEncryption/decryptionEncryption/decryptionEncryption/decryption sender encrypts message with the sender encrypts message with the sender encrypts message with the sender encrypts message with the
recipientrecipientrecipientrecipient’’’’s public keys public keys public keys public key

Note: attacker can do unlimited chosenNote: attacker can do unlimited chosenNote: attacker can do unlimited chosenNote: attacker can do unlimited chosen----plaintext attacks,plaintext attacks,plaintext attacks,plaintext attacks,

and try various guesses at private key to deciphand try various guesses at private key to deciphand try various guesses at private key to deciphand try various guesses at private key to decipherererer

• Digital signatureDigital signatureDigital signatureDigital signature sender sender sender sender ““““signssignssignssigns”””” message with his private keymessage with his private keymessage with his private keymessage with his private key

–Actually encrypts a hash (MD5/SHA) of the message

–Non-repudiation only private key owner could have signed the
message

• Key exchangeKey exchangeKey exchangeKey exchange two parties establish a session keytwo parties establish a session keytwo parties establish a session keytwo parties establish a session key

Strength

Factoring

Elliptics

Discrete log

Discrete log

7

CNS Lecture 8 - 37

Digital signatures

• like written signature like written signature like written signature like written signature

–verifies signer and date
–authenticate contents, tamperproof

– legally binding (verifiable by third party) – non-repudiation

• can encrypt whole message, hash is bettercan encrypt whole message, hash is bettercan encrypt whole message, hash is bettercan encrypt whole message, hash is better

–smaller, faster, privacy

• can use shared key (keyed hash) can use shared key (keyed hash) can use shared key (keyed hash) can use shared key (keyed hash) -------- but lacks nonbut lacks nonbut lacks nonbut lacks non----repudiationrepudiationrepudiationrepudiation

CNS Lecture 8 - 38

Digital signatures

• criteriacriteriacriteriacriteria
–signature must depend on message being signed

–must be unique to signer

–easy to generate, verify, and store
– infeasible to forge

can't construct new message for existing signature

can't forge signature for a new message

• sign: encrypt hash with private keysign: encrypt hash with private keysign: encrypt hash with private keysign: encrypt hash with private key

• verify: decrypt hash with public key, reverify: decrypt hash with public key, reverify: decrypt hash with public key, reverify: decrypt hash with public key, re----hash and comparehash and comparehash and comparehash and compare

• legally binding (nonlegally binding (nonlegally binding (nonlegally binding (non----repudiation)repudiation)repudiation)repudiation)

• used for authenticating messages, documents, and keysused for authenticating messages, documents, and keysused for authenticating messages, documents, and keysused for authenticating messages, documents, and keys

CNS Lecture 8 - 39

RSA

RivestRivestRivestRivest, , , , ShamirShamirShamirShamir, , , , AdlemanAdlemanAdlemanAdleman

• discovered a trapdiscovered a trapdiscovered a trapdiscovered a trap----door functiondoor functiondoor functiondoor function

• '77 MIT tech report and '77 MIT tech report and '77 MIT tech report and '77 MIT tech report and Mathematical Games Mathematical Games Mathematical Games Mathematical Games in '77 Scientific in '77 Scientific in '77 Scientific in '77 Scientific
American, and '78 CACMAmerican, and '78 CACMAmerican, and '78 CACMAmerican, and '78 CACM

• simple public key cryptographysimple public key cryptographysimple public key cryptographysimple public key cryptography

• strength based on difficulty in factoring strength based on difficulty in factoring strength based on difficulty in factoring strength based on difficulty in factoring largelargelargelarge numbersnumbersnumbersnumbers

• patented/licensedpatented/licensedpatented/licensedpatented/licensed

later revealed NSA/British may have already "done that"later revealed NSA/British may have already "done that"later revealed NSA/British may have already "done that"later revealed NSA/British may have already "done that"

CNS Lecture 8 - 40

RSA algorithm

Security through mathematicsSecurity through mathematicsSecurity through mathematicsSecurity through mathematics

• public modulus n and public key epublic modulus n and public key epublic modulus n and public key epublic modulus n and public key e

n is product of two secret primes p
and q, n=pq

e is chosen relatively prime to

φ(n) = (p-1)(q-1)
• Private key, dPrivate key, dPrivate key, dPrivate key, d

d = ed = ed = ed = e----1111 modmodmodmod(p(p(p(p----1)(q1)(q1)(q1)(q----1)1)1)1)

• encryption: c = mencryption: c = mencryption: c = mencryption: c = meeee modmodmodmod nnnn

• decryption: m = decryption: m = decryption: m = decryption: m = ccccdddd modmodmodmod nnnn

• must keep p, q, d secretmust keep p, q, d secretmust keep p, q, d secretmust keep p, q, d secret

CNS Lecture 8 - 41

RSA details

Key generationKey generationKey generationKey generation

• generate generate generate generate hugehugehugehuge (1000+ bits) random primes p and q(1000+ bits) random primes p and q(1000+ bits) random primes p and q(1000+ bits) random primes p and q
• n = n = n = n = pqpqpqpq
• choose random e relatively prime to (pchoose random e relatively prime to (pchoose random e relatively prime to (pchoose random e relatively prime to (p----1)(q1)(q1)(q1)(q----1) 1) 1) 1) φφφφ(n)(n)(n)(n)
• use extended Euclidean algorithm to compute d multiplicative use extended Euclidean algorithm to compute d multiplicative use extended Euclidean algorithm to compute d multiplicative use extended Euclidean algorithm to compute d multiplicative inverse of einverse of einverse of einverse of e

d = ed = ed = ed = e----1111 modmodmodmod(p(p(p(p----1)(q1)(q1)(q1)(q----1)1)1)1)
d is your d is your d is your d is your private keyprivate keyprivate keyprivate key (KEEP IT SECRET)(KEEP IT SECRET)(KEEP IT SECRET)(KEEP IT SECRET)

• public keypublic keypublic keypublic key: n, e: n, e: n, e: n, e

encryptionencryptionencryptionencryption c = mc = mc = mc = meeee modmodmodmod n (message represented as nn (message represented as nn (message represented as nn (message represented as n----bit number m)bit number m)bit number m)bit number m)

decryptiondecryptiondecryptiondecryption

ccccdddd modmodmodmod n = (mn = (mn = (mn = (meeee)))) dddd = m= m= m= medededed

Recall Recall Recall Recall d = e-1 mod(p-1)(q-1) so ed = 1 ed = 1 ed = 1 ed = 1 modmodmodmod (p(p(p(p----1)(q1)(q1)(q1)(q----1) 1) 1) 1) ���� ed = k ed = k ed = k ed = k φφφφ(n(n(n(n) +1) +1) +1) +1

So So So So ccccdddd modmodmodmod n = n = n = n = mmmmkkkkφφφφ((((nnnn) + 1) + 1) + 1) + 1 = = = = mmmmmmmmkkkk φφφφ((((n)n)n)n) = m= m= m= m

recall Euler's theorem: a φ(n) = 1 mod n

CNS Lecture 8 - 42

RSA examples
p=47, q=71 then n=3337p=47, q=71 then n=3337p=47, q=71 then n=3337p=47, q=71 then n=3337

find an e, relatively prime to find an e, relatively prime to find an e, relatively prime to find an e, relatively prime to

(p(p(p(p----1)(q1)(q1)(q1)(q----1)=32201)=32201)=32201)=3220

e=79, calculate (extended e=79, calculate (extended e=79, calculate (extended e=79, calculate (extended euclideuclideuclideuclid))))

d = 79d = 79d = 79d = 79----1111 mod 3220 = 1019mod 3220 = 1019mod 3220 = 1019mod 3220 = 1019

public (79,3337), public (79,3337), public (79,3337), public (79,3337),

private (1019,3337)private (1019,3337)private (1019,3337)private (1019,3337)

say m = 688 (plaintext), then say m = 688 (plaintext), then say m = 688 (plaintext), then say m = 688 (plaintext), then

c = 688c = 688c = 688c = 68879797979 mod 3337 =1570mod 3337 =1570mod 3337 =1570mod 3337 =1570

to decrypt, to decrypt, to decrypt, to decrypt,

15701570157015701019101910191019 mod 3337 = 688 = mmod 3337 = 688 = mmod 3337 = 688 = mmod 3337 = 688 = m

use UNIX use UNIX use UNIX use UNIX bcbcbcbc -------- can take a whilecan take a whilecan take a whilecan take a while

p=7, q=17 then n=119p=7, q=17 then n=119p=7, q=17 then n=119p=7, q=17 then n=119

find an e, relatively prime to find an e, relatively prime to find an e, relatively prime to find an e, relatively prime to

(p(p(p(p----1)(q1)(q1)(q1)(q----1)=961)=961)=961)=96

e=5, calculatee=5, calculatee=5, calculatee=5, calculate

d = 5d = 5d = 5d = 5----1111 mod 96 = 77mod 96 = 77mod 96 = 77mod 96 = 77

public (5,119), private (77,119)public (5,119), private (77,119)public (5,119), private (77,119)public (5,119), private (77,119)

if plaintext m=19, then if plaintext m=19, then if plaintext m=19, then if plaintext m=19, then

c = 19c = 19c = 19c = 195555 mod 119 = 66mod 119 = 66mod 119 = 66mod 119 = 66

decryption yields decryption yields decryption yields decryption yields

6666666677777777 mod 119 = 19 = mmod 119 = 19 = mmod 119 = 19 = mmod 119 = 19 = m

8

CNS Lecture 8 - 43

RSA software

• used in Netscape/SSL, Lotus Notes, used in Netscape/SSL, Lotus Notes, used in Netscape/SSL, Lotus Notes, used in Netscape/SSL, Lotus Notes, sshsshsshssh, PEM, PGP, , PEM, PGP, , PEM, PGP, , PEM, PGP, esmesmesmesm
• reference implementation RSAREF 2.0 (C library)reference implementation RSAREF 2.0 (C library)reference implementation RSAREF 2.0 (C library)reference implementation RSAREF 2.0 (C library)

–RSA key generation
–RSA sign/verify
–RSA encrypt/decrypt
–DES CBC
–MD5, MD2
–Diffie-Hellman
–multiprecision arithmetic
– random pool mgt (no source)

• primalityprimalityprimalityprimality
–small prime test (3,5,7,11)
–Fermat test 2p-1 = 1 mod p

Crypto Toolkit

secret-key crypto �

public-key crypto

big-number math �

random numbers�

prime numbers �

hash functions�

CNS Lecture 8 - 44

RSA in perl
WARNING -- THIS LABEL IS CLASSIFIED AS A MUNITION

RSA IN THREE LINES OF PERL

HAVE YOU EXPORTED A CRYPTO SYSTEM TODAY? --> http:/ /www.cypherspace.org/~adam/rsa/

#!/usr/local/bin/perl -s-- -export-a-crypto-system-si g -RSA-in-3-lines-PERL
($k,$n)=@ARGV;$m=unpack(H.$w,$m."\0"x$w),$_=`echo " 16do$w 2+4Oi0$d*-^1[d2%
Sa2/d0<X+d*La1=z\U$n%0]SX$k"[$m*]\EszlXx++p|dc`,s/^ .|\W//g,print pack('H*‘

,$_)while read(STDIN,$m,($w=2*$d-1+length($n||die"$ 0 [-d] k n\n")&~1)/2)

TRY: echo squeamish ossifrage | rsa -e 3 7537d365 | r sa -d 4e243e33 7537d365

FEDERAL LAW PROHIBITS TRANSFER OF THIS LABEL TO FOR EIGNERS

CNS Lecture 8 - 45

RSATest.java
import java.io.*;
import java.security.*;
import java.math.BigInteger;

public class RSATest {
public static void main(String[] args) throws IOExc eption {
BigInteger n,d,e,m,c,m1;

// rsa pub (e) and private (d) keys mod n
n = new BigInteger(
"12467899317123168996938478195368007977523029551389 0833332205993261431214145017901246238
895519988180024789662211326063630595211864218422061 0072971688712560157547953370625529343
803144523567196639119709415886884941439258168390537 1530307896151726649818252362048413805
6115643133052630577199833387088308265430407691");
e = BigInteger.valueOf(37L);
d = new
BigInteger("151636613316362866178981491565286583510 4152242736510135121424242368758009871
839339481283864432288675977171567435046719831563387 5377916196608995601619477080259016270
150094279303456010961499711962504117011699439969646 8106879360767967276183442800667287336
900102909953924400621287731220066980907736758683245 10565");

m = new BigInteger(1024, new SecureRandom());
m = m.mod(n);
c = m.modPow(e,n);

m1 = c.modPow(d,n);
System.out.println("msg m " + m.toString());
System.out.println("msg m1 " + m1.toString());

}
}

CNS Lecture 8 - 46

RSA with OpenSSL API
#include <stdio.h>
#include <openssl/rsa.h>
#include <openssl/objects.h>

static const unsigned char tmp16[16]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,

0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12};

main()
{

RSA *rsa;
int res,lth;
char *to, buff[4096];

rsa = RSA_generate_key(1024,RSA_3,NULL,NULL);
to = malloc(RSA_size(rsa));
lth = RSA_public_encrypt(sizeof(tmp16),tmp16,to,rsa, RSA_PKCS1_PADDING);
printf("lth %d\n",lth);
lth = RSA_private_decrypt(lth,to,buff,rsa,RSA_PKCS1_ PADDING);
printf("lth %d %d\n",lth,memcmp(buff,tmp16,sizeof(tm p16)));

RSA_sign(NID_md5,tmp16,sizeof(tmp16),to,<h,rsa);
printf("lth %d\n",lth);
res=RSA_verify(NID_md5,tmp16,sizeof(tmp16),to,lth,r sa);
printf("res %d\n",res);

}

CNS Lecture 8 - 47

OpenSSL RSA

• The RSA key The RSA key The RSA key The RSA key structstructstructstruct
struct RSA

{
BIGNUM *n; // public modulus
BIGNUM *e; // public exponent
BIGNUM *d; // private exponent
BIGNUM *p; // secret prime factor
BIGNUM *q; // secret prime factor
BIGNUM *dmp1; // d mod (p-1)
BIGNUM *dmq1; // d mod (q-1)
BIGNUM *iqmp; // q^-1 mod p
// ...
};

• RSA from the RSA from the RSA from the RSA from the opensslopensslopensslopenssl command linecommand linecommand linecommand line
genrsa -- generate RSA key (genrsa –des3 –out ca.key 1024)
rsautil -- encrypt/decrypt sign/verify

CNS Lecture 8 - 48

RSA performance

• key generation slow (e.g., PGP)key generation slow (e.g., PGP)key generation slow (e.g., PGP)key generation slow (e.g., PGP)

• encryption/decryption 1000 times slower than DESencryption/decryption 1000 times slower than DESencryption/decryption 1000 times slower than DESencryption/decryption 1000 times slower than DES

300 bytes/sec (see 300 bytes/sec (see 300 bytes/sec (see 300 bytes/sec (see OpenSSLOpenSSLOpenSSLOpenSSL speedspeedspeedspeed command)command)command)command)

• e=3 will speed up softwaree=3 will speed up softwaree=3 will speed up softwaree=3 will speed up software

• hardware: 10 Mb/sechardware: 10 Mb/sechardware: 10 Mb/sechardware: 10 Mb/sec

• Use RSA to encrypt session key, then use DES or AESUse RSA to encrypt session key, then use DES or AESUse RSA to encrypt session key, then use DES or AESUse RSA to encrypt session key, then use DES or AES

• Use RSA to encrypt hash of message (signature)Use RSA to encrypt hash of message (signature)Use RSA to encrypt hash of message (signature)Use RSA to encrypt hash of message (signature)

both also result in a plaintext (m) less than n bits c = me mod n

9

CNS Lecture 8 - 49

RSA optimizations

for 512for 512for 512for 512----bit numbers and larger, slowbit numbers and larger, slowbit numbers and larger, slowbit numbers and larger, slow

• speed up for exponentiation (square and multiply)speed up for exponentiation (square and multiply)speed up for exponentiation (square and multiply)speed up for exponentiation (square and multiply)

• e often set to 3 or 65537 (pub key fast)e often set to 3 or 65537 (pub key fast)e often set to 3 or 65537 (pub key fast)e often set to 3 or 65537 (pub key fast)

• keep p and q with d, do computations mod p and mod q, use keep p and q with d, do computations mod p and mod q, use keep p and q with d, do computations mod p and mod q, use keep p and q with d, do computations mod p and mod q, use
Chinese Remainder Theorem to compute answer mod nChinese Remainder Theorem to compute answer mod nChinese Remainder Theorem to compute answer mod nChinese Remainder Theorem to compute answer mod n

• Calculate the following and keep (secret) with dCalculate the following and keep (secret) with dCalculate the following and keep (secret) with dCalculate the following and keep (secret) with d

d mod (p-1)

d mod (q-1)

p-1 mod q

q-1 mod p

CNS Lecture 8 - 50

Chinese Remainder Theorem (CRT)

Allows us to manipulate BIG numbers in terms of tuples of smaller numbers (���� faster).

Handy in RSA with private key calculations where we know p and q

n = n = n = n = pqpqpqpq, want to calculate , want to calculate , want to calculate , want to calculate b = b = b = b = aaaakkkk mod nmod nmod nmod n
precalculate zzzz0000 = q= q= q= q----1111 mod p zmod p zmod p zmod p z1111 = p= p= p= p----1111 mod q c mod q c mod q c mod q c 0000 = qz= qz= qz= qz0000 mod n cmod n cmod n cmod n c1111 = pz= pz= pz= pz1111 mod nmod nmod nmod n
bbbb0000 = = = = aaaakkkk mod pmod pmod pmod p
bbbb1111 = = = = aaaa

kkkk mod qmod qmod qmod q
b = (bb = (bb = (bb = (b0000cccc0000 + b+ b+ b+ b1111cccc1111) mod n) mod n) mod n) mod n

Example : calculate (678 + 973) mod 1813 using CRT
n= pq n=1813 = 37*49 p=37 q=49 (p and q just need to be relatively
prime for CRT to work)

973 mod 1813 equivalent to (973 mod 37, 973 mod 49) = (11,42)
678 mod 1813 equivalent to (678 mod 37, 678 mod 49) = (12,41)
So: (11,42) + (12,41) = (23,34)

To verify, convert back, need (multiplicative inver se)
u = p-1 mod q = 34 and v= q-1 mod p = 4
(a,b) = (auq + bvp) mod n
(23,34) =(23*34*49 + 34*4*37) mod 1813

= (245 + 1406) mod 1813
= 1651

CNS Lecture 8 - 51

Number theory – hard problems

factoring a numberfactoring a numberfactoring a numberfactoring a number
• simple, but time consumingsimple, but time consumingsimple, but time consumingsimple, but time consuming
• use quadratic sieve or number field sieveuse quadratic sieve or number field sieveuse quadratic sieve or number field sieveuse quadratic sieve or number field sieve
• complexity ecomplexity ecomplexity ecomplexity e(1.9 (1.9 (1.9 (1.9 lnlnlnln (n))^ {2/3}(n))^ {2/3}(n))^ {2/3}(n))^ {2/3}

• strength of RSAstrength of RSAstrength of RSAstrength of RSA
• RSA factoring challenge RSA factoring challenge RSA factoring challenge RSA factoring challenge -------- 174174174174----digit factoreddigit factoreddigit factoreddigit factored

discrete logdiscrete logdiscrete logdiscrete log
• find x where afind x where afind x where afind x where axxxx = b mod p= b mod p= b mod p= b mod p
• basis of basis of basis of basis of ElGamalElGamalElGamalElGamal, DSS, , DSS, , DSS, , DSS, DiffieDiffieDiffieDiffie----HellmanHellmanHellmanHellman
• if you can solve discrete log, you can factorif you can solve discrete log, you can factorif you can solve discrete log, you can factorif you can solve discrete log, you can factor
• complexity complexity complexity complexity eeee((ln((ln((ln((ln p)^{1/3}(ln(ln p))^{2/3})p)^{1/3}(ln(ln p))^{2/3})p)^{1/3}(ln(ln p))^{2/3})p)^{1/3}(ln(ln p))^{2/3})

square roots mod nsquare roots mod nsquare roots mod nsquare roots mod n
y=xy=xy=xy=x2222 mod n given y, find xmod n given y, find xmod n given y, find xmod n given y, find x
easy if you know prime factors p and q where n = easy if you know prime factors p and q where n = easy if you know prime factors p and q where n = easy if you know prime factors p and q where n = pqpqpqpq

someone still might find a better way ...someone still might find a better way ...someone still might find a better way ...someone still might find a better way ...

CNS Lecture 8 - 52

Computational complexity big-O

• Time complexity of an algorithm Time complexity of an algorithm Time complexity of an algorithm Time complexity of an algorithm

• Number of operations as a function of size of inputNumber of operations as a function of size of inputNumber of operations as a function of size of inputNumber of operations as a function of size of input

–Matrix multiply for NxN matrix is O(n2)

–Brute force of DES is O(256)

• Algorithm with input size n is:Algorithm with input size n is:Algorithm with input size n is:Algorithm with input size n is:

–Linear if running time is O(n)

–Polynomial if O(nk)

–Exponential if O(kh(n))

– computationally feasible if polynomial or linear or if n is small

CNS Lecture 8 - 53

RSA strength
factoring nfactoring nfactoring nfactoring n

• operations operations operations operations eeeesqrtsqrtsqrtsqrt {{{{ln(n)ln(ln(nln(n)ln(ln(nln(n)ln(ln(nln(n)ln(ln(n))}))}))}))}

• TimeTimeTimeTime
– 200 digit n, 665 bits, 1023 ops @ 109 ops/sec,
380,627 years

– 400 digits, 1400 bits would take
1015 years -- longer than age of universe

• SpaceSpaceSpaceSpace
– precalculate factors of all 200 digit numbers
– 9 × 10200 × 665 bits
– store on 100 GB drives, each weighing one millionth of a
gram

– weight: 10177 tons
earth: 1021 tons, black hole 1027

CNS Lecture 8 - 54

RSA vulnerabilities

•finding factors of n, or computing φφφφ(n), or finding d

•guess

•off-line dictionary attacks (steal your key file, guess your passphrase)

•keyboard/net sniffer

•rubber-hose

•brute force

easy to generate messages with someone's public key, then try different d to get back plain text

•some other way ? new math?

crypto-card best protection (USB, PCMCIA, smartcard)

keys and crypto software on the card

do sign/encrypt via card API

160 530 April 2003 lattice seive

200 663 May,2005 lattice sieve

10

CNS Lecture 8 - 55

Timing attacks

• note that big integer multiplies take a long timenote that big integer multiplies take a long timenote that big integer multiplies take a long timenote that big integer multiplies take a long time

• if calculating if calculating if calculating if calculating ccccdddd modmodmodmod n, then some modular multiplications may take longer than n, then some modular multiplications may take longer than n, then some modular multiplications may take longer than n, then some modular multiplications may take longer than
others, depending on whether a bit in d is set or notothers, depending on whether a bit in d is set or notothers, depending on whether a bit in d is set or notothers, depending on whether a bit in d is set or not

• need a hineed a hineed a hineed a hi----resolution timer and lots of samplesresolution timer and lots of samplesresolution timer and lots of samplesresolution timer and lots of samples

• discover secret d bit by bitdiscover secret d bit by bitdiscover secret d bit by bitdiscover secret d bit by bit

countermeasurescountermeasurescountermeasurescountermeasures

• quantize all operations (quantize all operations (quantize all operations (quantize all operations (cryptolibcryptolibcryptolibcryptolib))))

• add random delayadd random delayadd random delayadd random delay

• blindingblindingblindingblinding

instead of m = cd modmodmodmod n generate a random r and calculate

m = r-1 (cre) d modmodmodmod n

The RSA API’s usually pad the message before encrypting to randomize the

ciphertext and limit chosen-cipher text attacks (see OAEP) and PKCS standards.

CNS Lecture 8 - 56

ElGamal

• 1985 public1985 public1985 public1985 public----key scheme, based on discrete log key scheme, based on discrete log key scheme, based on discrete log key scheme, based on discrete log
• like Dlike Dlike Dlike D----H, public: H, public: H, public: H, public: generatorgeneratorgeneratorgenerator g, prime pg, prime pg, prime pg, prime p
• user A picks random Xuser A picks random Xuser A picks random Xuser A picks random XAAAA as private keyas private keyas private keyas private key

calculate public key Ycalculate public key Ycalculate public key Ycalculate public key YAAAA = = = = ggggXXXX
AAAAmod pmod pmod pmod p

• to encrypt M for user B (public key Yto encrypt M for user B (public key Yto encrypt M for user B (public key Yto encrypt M for user B (public key YBBBB))))
pick random k mod p
encrypt M as a pair (C1, C2)
C1 = g

k mod p
C2 = YB

k M mod p
• B decrypts withB decrypts withB decrypts withB decrypts with

computes C1
p-1-X

B = C1
-X
B mod p

M = C2 C1
-X
B mod p

because C2C1
-X
B = g

kX
B M g-kXB

• requires random number for each encryption requires random number for each encryption requires random number for each encryption requires random number for each encryption
• requires 2 exponentiations for each encryptionrequires 2 exponentiations for each encryptionrequires 2 exponentiations for each encryptionrequires 2 exponentiations for each encryption
• message expansion (cipher text twice as big)message expansion (cipher text twice as big)message expansion (cipher text twice as big)message expansion (cipher text twice as big)
• DSS is a variantDSS is a variantDSS is a variantDSS is a variant

CNS Lecture 8 - 57

ElGamal example

Using bc, given p = 2357, g=2, B's private key = 1 751

2^1751%2357
1185 B’s public key

want to encrypt m=2035 using random k=1520
2^1520%2357
1430 C 1 = g k

2035*1185^1520%2357 m * y B
k mod p

697 C 2

send 1430 697 (C 1 C2 ciphertext)

B decrypts, p-1-1751 = 605
1430^605%2357
872

697*872%2357 M = CM = CM = CM = C2 2 2 2
CCCC1111

----XXXX
BBBB
mod pmod pmod pmod p

2035 m

XB

YB = g XB mod p

C1
–X

B mod p

CNS Lecture 8 - 58

DSA

DSS Digital Signature Standard (FIPS 186, 1994)DSS Digital Signature Standard (FIPS 186, 1994)DSS Digital Signature Standard (FIPS 186, 1994)DSS Digital Signature Standard (FIPS 186, 1994)

• in '82 US solicited publicin '82 US solicited publicin '82 US solicited publicin '82 US solicited public----key algorithms for a standardkey algorithms for a standardkey algorithms for a standardkey algorithms for a standard

• in '91 NIST proposed DSA for DSSin '91 NIST proposed DSA for DSSin '91 NIST proposed DSA for DSSin '91 NIST proposed DSA for DSS

• controversycontroversycontroversycontroversy

– many companies had licensed RSA

– RSA de facto standard

– slower than RSA

– trap-door concern

– not as well tested as RSA (test of time)

– modulus too small (512) -- expanded later

– requires unique secret for each message

– only signature (can’t do encryption) � exportable☺

• Gov'tGov'tGov'tGov't approved: DES, SHA, DSA, AESapproved: DES, SHA, DSA, AESapproved: DES, SHA, DSA, AESapproved: DES, SHA, DSA, AES

• FIPS 186FIPS 186FIPS 186FIPS 186----2 (2000) digital signatures (DSS, RSA, ECC)2 (2000) digital signatures (DSS, RSA, ECC)2 (2000) digital signatures (DSS, RSA, ECC)2 (2000) digital signatures (DSS, RSA, ECC)

CNS Lecture 8 - 59

DSA details

• one of many discrete log signature schemesone of many discrete log signature schemesone of many discrete log signature schemesone of many discrete log signature schemes

• based on based on based on based on ElGamalElGamalElGamalElGamal ('85) and ('85) and ('85) and ('85) and SchnorrSchnorrSchnorrSchnorr ('89)('89)('89)('89)

• strength based on discrete logs (like Dstrength based on discrete logs (like Dstrength based on discrete logs (like Dstrength based on discrete logs (like D----H)H)H)H)

• could be subject to could be subject to could be subject to could be subject to SchnorrSchnorrSchnorrSchnorr patent infringementpatent infringementpatent infringementpatent infringement

• uses hash function H(m), SHA in standarduses hash function H(m), SHA in standarduses hash function H(m), SHA in standarduses hash function H(m), SHA in standard

• not intuitive like RSAnot intuitive like RSAnot intuitive like RSAnot intuitive like RSA

CNS Lecture 8 - 60

ElGamal signatures

• choose prime p and generator g choose prime p and generator g choose prime p and generator g choose prime p and generator g
• generate random secret x, calculate public key y = generate random secret x, calculate public key y = generate random secret x, calculate public key y = generate random secret x, calculate public key y = ggggxxxx modmodmodmod pppp
• public: p, g, ypublic: p, g, ypublic: p, g, ypublic: p, g, y
• h = hash of messageh = hash of messageh = hash of messageh = hash of message
• generate another random secret k relatively prime to pgenerate another random secret k relatively prime to pgenerate another random secret k relatively prime to pgenerate another random secret k relatively prime to p----1 (unique for each message)1 (unique for each message)1 (unique for each message)1 (unique for each message)
• signature is (r,s)signature is (r,s)signature is (r,s)signature is (r,s)

r = r = r = r = ggggkkkk modmodmodmod pppp
s = (h s = (h s = (h s = (h ---- xr)kxr)kxr)kxr)k----1111 modmodmodmod (p(p(p(p----1)1)1)1)

• Verify: calculate hash h, check if yVerify: calculate hash h, check if yVerify: calculate hash h, check if yVerify: calculate hash h, check if yrrrr rrrrssss = = = = gggghhhh modmodmodmod pppp
• NoteNoteNoteNote

– similarity to D-H
– r independent of message/hash
– doesn't recover hash, just verifies
– must have different random k for each message
– calculating k-1 modmodmodmod p slow, but can pre-calculate

yrrs = gxr gk(h-xr)k^-1

11

CNS Lecture 8 - 61

DSA algorithm

public p, q, g, y

generate prime p (512-1024 bits)
find q a prime factor of p-1 (160 bits)
find g = h (p-1)/q mod p where h < p and h (p-

1)/q mod p > 1
Generate random x, publish y = g x mod p

private: x < q (160 bits)

signing (signature (r,s))
generate random k < q (secret)
r = (g k mod p) mod q
s = (k -1 (H(m) + xr)) mod q

verifying (OK if v = r)
w = s -1 mod q
a = (H(m)w) mod q
b = (rw) mod q
v = ((g ayb) mod p) mod q

verifies hash H(m) -- doesn't recover hash

CNS Lecture 8 - 62

RSA vs DSA signatures

CNS Lecture 8 - 63

DSA performance

• signature verify is hundred times slower than RSAsignature verify is hundred times slower than RSAsignature verify is hundred times slower than RSAsignature verify is hundred times slower than RSA

• faster than faster than faster than faster than ElGamalElGamalElGamalElGamal since q is smaller than psince q is smaller than psince q is smaller than psince q is smaller than p

• calculating multiplicative inverses slowcalculating multiplicative inverses slowcalculating multiplicative inverses slowcalculating multiplicative inverses slow

• though can prethough can prethough can prethough can pre----calculate some things, r doesn't depend on calculate some things, r doesn't depend on calculate some things, r doesn't depend on calculate some things, r doesn't depend on
message at allmessage at allmessage at allmessage at all

• good random number generator is essential for kgood random number generator is essential for kgood random number generator is essential for kgood random number generator is essential for k

• if Mallory ever figures out a k, she can recover the private keyif Mallory ever figures out a k, she can recover the private keyif Mallory ever figures out a k, she can recover the private keyif Mallory ever figures out a k, she can recover the private key xxxx

• Can you show what Eve can deduce if the same k is used for two Can you show what Eve can deduce if the same k is used for two Can you show what Eve can deduce if the same k is used for two Can you show what Eve can deduce if the same k is used for two
different messages?different messages?different messages?different messages?

CNS Lecture 8 - 64

Time-stamp services

digital notarydigital notarydigital notarydigital notary

• digital signatures assures who and what, but not whendigital signatures assures who and what, but not whendigital signatures assures who and what, but not whendigital signatures assures who and what, but not when

• signed documents should contain "date"signed documents should contain "date"signed documents should contain "date"signed documents should contain "date"

but signer could alter time before signingbut signer could alter time before signingbut signer could alter time before signingbut signer could alter time before signing

• need trusted third partyneed trusted third partyneed trusted third partyneed trusted third party

• for privacy, submit hash (actually signed hash) to third partyfor privacy, submit hash (actually signed hash) to third partyfor privacy, submit hash (actually signed hash) to third partyfor privacy, submit hash (actually signed hash) to third party

• third party "publishes" hash logthird party "publishes" hash logthird party "publishes" hash logthird party "publishes" hash log

• PGP timePGP timePGP timePGP time----stamp servicestamp servicestamp servicestamp service

–email document to service

–service returns date/seqno signature

–service publishes seqno/date

CNS Lecture 8 - 65

example
pgp -sba tst.c

verify: pgp tst.c.asc

mail pgp@stamper.itconsult.co.uk < tst.c.asc

get back new get back new get back new get back new tst.c.asctst.c.asctst.c.asctst.c.asc (detached sig. file)(detached sig. file)(detached sig. file)(detached sig. file)

-----BEGIN PGP MESSAGE-----
Version: 2.6.3i
Comment: Stamper Reference Id: 0028848

iQEVAgUAOMPQC4GVnbVwth+BAQF0/wf6AhL1Jvm9Tb54VRs6RKmf16rs1ugqkeEO
oET6S7/cVAz2l2xKdrtrFenv2hksM1sHrKvF5yCECbwqQaLjVHc 7fgvAg+/y9VsM
18aj3rzG0qAF3GGkWehjRIKdAVBczcVEHrkX/WfflLgU81+V1qL EfzwT+VkmuwRQ
bZOqphYKjx0geD//o2zBu2JQTFatb7TCdNEhgCEHDSxxMFCmcy1 MOneC9veWmUOi
qmHiyBCx5XPXdohuoFaGOJx4CHTmHcaKumWydGkEXzgOknuNwJh1nlyLWHn01O3E
=KyBO
-----END PGP MESSAGE-----

pgp tst.c.asc (verify)

File has signature. Public key is required to chec k signature. .
Good signature from user "Timestamp Service <stampe r@itconsult.co.uk>".
Signature made 2000/03/06 15:35 GMT
File has signature. Public key is required to chec k signature.
File 'tst.c.01' has signature, but with no text.
Text is assumed to be in file 'tst.c'.
.
Good signature from user "Tom Dunigan <thd@ornl.gov> ".
Signature made 2000/03/06 15:11 GMT

CNS Lecture 8 - 66

Digital notary

surety.comsurety.comsurety.comsurety.com/RSA/RSA/RSA/RSA

• timetimetimetime----stamping servicestamping servicestamping servicestamping service

• hash chaining with binary treehash chaining with binary treehash chaining with binary treehash chaining with binary tree

• can't postcan't postcan't postcan't post----date or predate or predate or predate or pre----datedatedatedate

• algorithm (patented) algorithm (patented) algorithm (patented) algorithm (patented)

– user sends hash (288-bit) of document

– service combines hash with other recent hashes

– each minute creates superhash of aggregate hash with previous superhash

– user gets certificate of hash path

– service publishes time and superhashes each week in New York Times

– third party can verify hash and superhash

• Digital notaries handy for business e documents, also for cyber Digital notaries handy for business e documents, also for cyber Digital notaries handy for business e documents, also for cyber Digital notaries handy for business e documents, also for cyber forensics forensics forensics forensics
(hash/sign and time(hash/sign and time(hash/sign and time(hash/sign and time----notarize digital evidence, e.g. disk images, logs)notarize digital evidence, e.g. disk images, logs)notarize digital evidence, e.g. disk images, logs)notarize digital evidence, e.g. disk images, logs)

12

CNS Lecture 8 - 67

Next time …

ECC

PKCS

ssh and pgp

