CNS
Lecture 6

Block ciphers -- AES (Rijndael)
Stream ciphers
Key management

review

assignment5 A
assignment 6

You are here ...

Attacks & Defenses Cryptography Applied crypto

* Risk assessmenty’ Random numbersy’ «SSH
o Vi v
Viruses *Hash functionsy” PGP
* Unix securityy’
* authenticationv’
* Network security
Firewalle,vpn,IPsec.IDS

MDS5, SHA,RIPEMD *S/Mime

«Classical + stegov’ *SSL

*Number theory *Kerberos
*Symetric key IPsec
DES, Rjndael, RC5
*Public key
RSA, DSA, D-HECC
CNS Lecture 6- 3 u

A

In the news

)
R

* Microsoft [E Active X remote code execution

* Microsoft powerpoint remote code execution (O-day)
* MAX 0S5 X multiple vulnerabilities

* OpenSSL ASN.1remote buffer overflow

* gzip, firefox, Adobe flash player, ...

CNS Lecture 6 - 2 w

Block cipher modes

* ECB, CBC, CFB, OFB, CTR

» applies to all block ciphers

* Padding, chaining and V's

* hide repeated plaintext

» different error/attack properties

encryption does not guarantee message integrity!

Padding, IV's, and key generation in OpenSSL

* Encryptionwill pad to block size of cipher (DES: & bytes, AES 16)
—E.g., 3bytesin=> Sencryptedbytes out, 21in = 24 out
—May want to pre-pad with random “salt” to obscure same message
* OpenSSL gtandard APl encryption pads with bytes of IV
—EVFP methods pads with byte count (PKCS 5)
and pre-pends &-byte magic “Salted__" and & byte random salt

— openesl des-cbe: 7 bytes in = 24 encrypted bytes out, & bytes in =¥ 32 encrypted
bytes out

* Clpher may be attackable if attacker knows IV
—Best practice: derive IV from shared secret (asnmt 7) + nonce?
—Need different IV when restarting encryption
—OpenSSL EVP optionally derives IV from MD5 of key
* Converting a pageword to akey
— Assignment 7 uses MD5
—OpenSSL EVP_BytesToKey() generates key and IV from password using MDS

CNS Lecture 6 - 5 w

Block ciphers

Feistel substitution and permutation
*DES sperformance (time/epace) v strength
* Lucifer “large keys
, *strong subkey generation
« blowfish *large blocks
«CAST *simple operations, non-linear functions (S-box, rotate)

siterative, more rounds
sresist known attacks (diff./lin.)
| sciphertext should have uniform distribution (look random)
non-Feistel
*IDEA
*RC2,RCH5
* AES (Rijndael)

* For non-felstel need invertible operations

CNS Lecture 6- 4 w

CNS Lecture 6 - 6 w

AES

Advanced Encryption Standard

* replace DES

« '97 call for algorithms
—royalty free, publicly disclosed
—128-bit block symmetric key cipher
—key-sizes: 126,192, 256

Other crypto bake-offs
Europe: NESSIE
Japan: CRYPTREC

evaluation criteria

* security

* cost/performance (mermory, computational efficiency)
« archivecture -- simplicity, flexibility

* hardware/software suitability

9815 candidates
*’99 5 finalists (MARS, RC6, Rijndael, Serpent, Twofish)

CNS Lecture 6 - 7 ‘

Mars (IBM)

* Feistel (1/4, 3/ 4 rather than even split)
* & (unkeyed) pre/post-whitening rounds
—addition, XOR, and 512x32 S-box (52-bit
words)

* 16 keyed rounds

—addition, XOR, and S-box, multiplication,
data-dependent rotations, key addition

* S-box: pgeudo-random and vested

* key schedule: linear transform and S-box, with
pattern matching to eliminate weak subkeys

keys copied into T[i]
Tji) = Th| #{(Th=T Th

CNS Lecture 6 - 8 w

serpent

* substitution-linear transform network

* non-feistel —need inverse S-boxes and inverse transform

* 256-bit key. 128-bit blocks, 32-bit work unit

* bit-slice mode Xy T8 Xy X

* & 4x4 DES-like S-boxes Linear transform (L)~ + 1 """
— pseudorandom with testing Sl

* 32 rounds (most secure, slow)
—XOR, 5-boxes, linear transform

— avalanche after 3 rounds user key w;
* key schedule: affine recurrence with S-boxes = it i - e)
33 128-bit subkeys

+ RC6 (son of RC5)
« Twofish (son of Blowfish)

CNS Lecture 6- 9 u

Rijndael
rhine-doll (or rain dolf)

* son of Square cipher
* substitution-linear transform network
rnon-feistel (need inverse)
* plaintext block (16 bytes) treated as 4x4 array (state array)
* 10/12/14 rounds (128/192/256 key size)
S-box, row shifts, column mixing, key-XOR
* key schedule: S-box, constants with XOR, rotates
* 16x16 S-box (256 bytes)
* For decryptionneed inverge S-box and inverse mixcol
* Rijndael uses polyromial arithmetic (S boxes and mixcol)
a(x) = 2% + a,x% + ax +a, mod (x* +1)
coefficients (bytes) a, arein GF(2%)

Table 5.3 AES Parameters

Key size iwords bybe bity) 418028 624002 BN
Plaintext block sk iwordn bytes bits s 418028 UL b AN6NE
Number of rowsdy 0 12 H
ound ke wize cwords by te bl viss e e
Expanded by sar wardsstest wine S8 o2
CNS Lecture 6 - 10 By

Rijndael setup — key expansion B[u]w]n

* Key expansion (16B key > 176B subkeys)
—g:byterotate, S-box, XOR with const,
—Subkey (4 4-byte words) for each round plus H!ﬂ w b words

one more subkey

—For AES-128, 11 subkeys (10 rounds + 1) 3k repeat
P PP

2] v] -

Combine words into subkeys

* Rationale
—Resistant to attacks
—Round constants eliminate symmetry

—Knowledge of some bits of key or subkey does
not help calculating other subkeys

— Diffusion
—Speed
— Can generate subkeys on the fly (time/space)

Figere 56 AES Key Expansion

CNS Lecture 6 - 11 w

Rijndael setup -- S box setup

* S-box (and inverse S-box) (256-byte) can be calculated or
pre-built (time ve memory) (permutation of all 256 bytes)

Rl =l r S-box creation:
F 5 E 1. initialize to 00 ... FF
Ty = 5 St 2. calculate multiplicative inverse of each element
C1E1 A Fel=Tal over GF(29) mod Xesxéoxdx+L
L= z = L 3. transform bits of byte with XOR with constant
e & TeTetal
solalvle T T [
Felsts wlelole]
(ECELICEN IR -
[Fixlulwlw e ietuintats] Cxample: 97 > 88
* Ratlonale

—Low correlation between input and output bits
—Must be invertible

—Step 3 prevents interpolation attacks and eliminates
S(a)=a and S(a)=a’
—Only non-linear transform of cipher

CNS Lecture 6 - 12 w

Encryption/decryption

Encryptionis not identical to decryption.
Decryption is same sequence of

but using inverse tr
Change of subkeys needed
Need rounds-+1subkeys
Note lzst: round has no mixcolumn
Firet/last step lo add round key ... why?

i

=T
!m 1
=

i, 4]

CNS Lecture 6 - 13

. 16 bytes data/state
Rinjdael stages T

*Byte substitution -- S-box (nonlinear, strength)
+Shift rows — permutation (diffusion)

*Mix columns - substitution using arithmetic over GF(28)
-multiplies data array with constant array
-multiplication is polynomial multiplication
mod x* + 1 over GF(28)
-- easy in hardware and fast
table-lookup in software (256-entry multiplication table)
-each element of a column is function of all the elements
of the column (mixing) :
. . . round T
+Add round key — XOR with round key (simple Vernam/XOR cipher) key data/state
-on 32-bit processor, round transformation can be done in set of table lookups
-table lookups contribute to speed of Rijndael and prevent timing/power attacks
- Potential for parallelism and each stage is reversible - decryptionworks

CNS Lecture 6 - 14 w

Rijndael data structures

ing [, Jimg [, S v a1 fun | s s | e o A
iy [| imy S f s [e B f fa Jiua f 1
ing [i, Jom L B f 1 s o
] s S f 1 | B | L e el s
) Tt st and watper
e]
B f e e
w |- b
B [o] o
B [o fha] .

) Ky it i by

* 128-bit (16 byte) datablock treated at 4x4 byte array

CNS Lecture 6 - 15 ur

Rijndael round

[T —r—r—

. E]I?I[]%I%I%]E]I?IJ][]I%J%&I%}
. ..‘:] [

i

[TILITITII]
— ol el Nyl il

s % "ea"ﬁia ‘ea ‘e %r‘e’\% %% ii)

CNS Lecture 6 - 16 w

Row and column transformations

Row transform

*Row 1 -- unchanged
*Row 2 - rotate left 1 byte
*Row 3 - rotate right 2
*Row 4 - rotate right 1

The row transform shifts column values,

the 4 bytes of one column are spread out
to four different columns. N
| - ‘
Mix column I i
o B RN W I N [
each byte of a column is mapped o [s [W] A [T
.) . [#or [[£ [|
into a new value that is a function = -
o 0| 1s [0 Voo | Faa | s [

of all four bytes in the column.

matrix multiply is over GF(28) M sobmmn e fermation
[After a few rounds, all output bits depend on all input bits. |

CNS Lecture 6 - 17

Substitute byte and add round key

i) Sabsivmte byte tramdormation

4 Al Romnd Ky Tramfarmation

CNS Lecture 6 - 18 w

Rijndael decryption

i, 43y

*Each stage is reversible
alter direction of shift rows
invert Sbox [i e}
Invert mixcolumn (mod x* + 1)
a(x) = {033 + {O1}x2 + {O1}x + {02}
a'(x) = {OB}x® + {OD}x? + {09} + {OE}
*Modiified round key

pre-calculate when making subkeys

—s =t

Expan by

So decryption differs slightly from encryption

1o, 3

CNS Lecture 6 - 19

Finite field of dreams

* What we'd like is arithmetic over a finite field
—Computers do better with finite (discrete) arithmetic

—Field is associative, commutative, etc, with additive inverse,
multiplicative inverse

—Works for arithmetic mod a prime, e.g (5/4) mod 7 = 3
—But computer “words” are usually powers of 2, (5/4) mod & =@
*Stay tuned ... corn fields, wheat fields, Galois fields ©

=1 || n]w|a]a|a]s
o [naf va ||| =] 1 |3

=) N ™ S Y
waln |] =]

e} Additive aad mmlegplicatve
ONS Lecture 6- 21 verses modulo 8

The mathematics of cryptography

Finite (discrete) mathematics
*Modular arithmetic (shift ciphers, polyalphabets, Hill cipher)
+Primes and prime factors, greatest common divisor, BIG integer libraries
«Linear transforms (row/column transpositions, linear algebra)
+Exponentiation/discrete logs (D-H, RSA)
*Polynomial arithmetic (CRC, AES, LFSR, ECC)
«Elliptic curves (ECC)

CNS Lecture 6 - 20 w

Rijndael and polynomial arithmetic

* Rijndael utilizes polynomial arithmetic in two ways (really one)
—Invertible arithmetic (finite field) over &-bit numbers (+ x)
invertible S-box
linear transforms (mixcolumn)
—4-byte arithmetic (constant poly is relatively prime tox* + 1)
Invert mixcolumn — mod (x* +1)
a(x) = {03}x% + {01}x% + {O1}x + {02}

Polynomial arithmetic used by CRC’s, Rijndael, LFSR’s, ECC

Polynomial arithmetic

* addition and multiplication

(Bx* + 5x2) + (B + BxB) = Bx* + x3 + 11x2

(Bx* + 2x3) (x +1) = 3x5 + Bx* + 2x3

« division: 3x7 +x® +x? - 2 divided by x*-1 — e
equals 3x2 +x with remainder 3x2 + 2 +x -2

« Coefficients canbe integers or modp (ZP)
((Bx* +5x?) + (x2 + 6x2)) Mod 7 = (Bx* + X2 + 112) mod 7 = Bx* + X2 + 4x?

see CRC reading or Rijndael spec or text Ch4 and Ch. 5 appendix

CNS Lecture 6 - 23

Polynomial arithmetic over GF(2)

Galois fields: finite fields of

* hardware influence: use coefficients mod 2 order o, writen GF(p)

—Think of each bit as a coefficient
— addition/subtraction is XOR, multiply is AND
* polynomial: x3+x+1is 1011
X+ D (2+x) =X+)2+ %2 4% =x2+x
* Hardware/software: fast, XOR and table lookups

[EEv—— s Diviken.

Figare £4 Examples of Polynomial Asithmetic oves GF12

CNS Lecture 6 - 24 w

CNS Lecture 6 - 22 w

Modular polynomial arithmetic over GF(2")

* Do polynomial multiplication mod an Irreducible polynomial
* Notion of prime/irreducible polynomiale
(x) Is rreduclble if it cannot be expressed as product of two polynomials
GF(2°) has 30 irreducible polynomizls, Rijndael uges the first one ©
XX+ +x+1

* Primitive polynomials (a subset of irreducible polynomials) generate all elements of an
extension field from a base field (used in LFSR)

Over GF(2") there are $(2"—1) / n primitive polynomialg
$(n) number of elements relatively prime ton (Euler’s totient)

n__ primitive polynomials

x+1

X2 4%+ 1
X2 4x+1, X3+ xZ+ 1

BN S

)1, x*4x3 41 (x*+x2 + %2 + s irreducible but not primitive)

CNS Lecture 6 - 25 ‘

modular polynomial arithmetic over GF(29)

Finite field GF(2%) - only two irreducible polynomials: X3 +x2 +1 x3+x+ 1

Tobke 45 Palsmosmial

Addition is just XOR

———
Multiplication by x (010): shift left, if bit shifted out is 1 XOR in 011
Ifm(x)=x3 +x + 1then x3mod m(x) =m(x) -x3=x+1 < 011

CNS Lecture 6 - 27 u

Rijndael poly arithmetic

«Coefficients of polynomial in GF(28) represented by 8-bit number (byte)
*Addition of two polynomial is just XOR of the two &-bit numbers

(@ +x* +x2 +x+1) + (7 +x+ 1) = X7 +x8 +x* +x2

01010111 + 1000001 = 11010100

*Multiplication is more complicated (nesd modular reduction), but stillis just
shifts and XORs

Rijndael prime poly: x8 + x* + x3 +x + 1
For multiplication by x, a shift and XOR in 00011011
g;é(czo}liumn does modular poly multiply mod (x*+1) (e.g. 4 bytes, eachin

({031 + {01px2 + {01}x + {02}) mod (x¢ + 1)

but It is Implemented as multiply and add on GF(28)

CNS Lecture 6 - 29 w

poly arithmetic in GF(28)

* Extended Euclid algorithm can be used to find the multiplicative inverse
of a polynomial (exists if mod irreducible polyromial)

Tabile 4.7 Extended Enelid (1" ¢ x ¢ 1, 0% o o o 0 0 w0 1]

Inisialkzarion | AL = 1; AJCO =0, ANO = d e m e esel

Teeration |

Tneration 1

Teeration 1

Tneration 4)
1B

Result: (x +x+ 1)1 =x7

enstecwres- 26 O 10000011 x 1000000 = 00000001 ur

Modular poly arithmetic comparison (3-bit)

| FYSTprR—————— Wable 45 At i GF12

mod x3 +x + 1

- 8 See previous slide

Multiplication is just shift and XOR
(5/4) mod 8 =(5 *4") mod 8 AR
® no solution Every element has a multiplicative inverse

Now 5/4 has a solution © = 2
CNS Lecture 6 - 28 By

CRC’s and polynomial arithmetic - sidebar "

*CRC i remazinder in dividing mesoage by polynomial data stm?m

Think of message as long string of bits (polynomial) l
Can be implemented with XOR's, shifts, and a table lookup

Fast in hardware. inC

r=0; while (len--) r = (r<<8) ~ t[(r >> 24) " *p++]

3 2 1 0 byes
@©@<— L T T T register
i 4

% ' table
o e |

*CRC polynomials chogen to detect “common” errors o

+All single bit errors 255

“All 2-bit . .

&-bit errors 1. Shift the register left by one byte,
*N-bit errors bursts reading in a new message byte.
*Wotry about what errors are not detected? 2. XOR the top byte just rotated out of

+Some popular CRC polynotizls: the register with the next message

16 bits: byte to yield an index into the table
0,255]).
(16,1250) X25standard X1 +x12+ x5 +1 ()
(16152,0) "CRC-16* 3. XOR the table value into the
o register.
32 bits:

4. Goto 1 iff more message bytes.
(32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) Ethernet

CNS Lecture 6 - 30 w

Rijndael in C

/* BC byte count rk round key S sbox*/
/* plaintext in a */
KeyAddition(a,rk[0],BC);

/* ROUNDS-1 ordinary rounds */
for(r = 1; r < ROUNDS; r++)
Substitution(a,S,BC);

shiftRow(a,0,BC);
MixColumn(a,BC);
KeyAddition(a, rk[r],BC);

-

¥

/* Last round is special: there is no MixColumn */
Substitution(a,S,BC);

ShiftRow(a,0,BC);

KeyAddition(a, rk[ROUNDS] ,BC);

CNS Lecture 6 - 31

Rijndael/AES in OpenSSL

* Command line (uses EVF mode, prepend magic and salt, pad with byte count)

aes-126-cbc aes-128-ech aes-192-cbc aes-192-ech
aes-2506-cbc aes-256-ech
openssl aes-256-cbc -in plain.txt -out enc.dat -pass pass:boo
* APl
#define AES_BLOCK_SIZE 16
int AES_set_encrypt_key(const unsigned char *userKey, const int bits,
AES_KEY *key);
int AES_set_decrypt_key(const unsigned char *userkey, const int bits,
AES_KEY *key);
void AES_cbc_encrypt(const unsigned char *in, unsigned char *out,
const unsigned long length, const AES_KEY *key,
unsigned char *iv, const int enc);

enc is either AES_ENCKYFT or AES_DECKYFT

Result of encryption will be rounded up to a multiple of block size (26)
with IV padding. (e.g., you encrypt 3 bytes, you'get 16 bytes out)

IV will be updated.

You need to set up the key specifically for encryption and again for
decryption, since AES has a different key schedule for encryption
and decryption

CNS Lecture 6 - 32 w

example

#include <openssl/aes.h>

static const unsigned char keyl6[16]=
{0x12,0x34,0x56,0x78,0x9a,0xbc , Oxde , 0xfO,
0x34,0x56,0x78,0x9a,0xbc,0xde, 0xf0,0x12} ;
unsigned char iv[16],tmpiv[16];

mainQ)
char out[4096],in[4096], *str="123456789abcdefghij";
AES_KEY aeskey;
int Ith;
Ith = strlen(str) + 1;
strncpy(in,str, Ith);
AES_set_encrypt_key(key16,128,&aeskey) ;
memcpy (tmpiv, iv,sizeof(iv));
AES_cbc_encrypt(in,out, Ith, &aeskey, tmpiv,AES_ENCRYPT);
AES_set_decrypt_key(key16,128,&aeskey) ;
memcpy(tmpiv, iv,sizeof(iv)); //reset IV
AES_cbc_encrypt(out, in, sizeof(out),&aeskey, tmpiv,AES_DECRYPT);
printf('%s\n",in);

3

See ~dunigan/cne06/aes.c and assignment 7

CNS Lecture 6 - 33

AES and jaVa (see ~dunigan/cns06/aes.java)

// Get the KeyGenerator
KeyGenerator kgen = KeyGenerator.getlnstance(*'AES™);
kgen.init(128); // 192 and 256 bits may not be available
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
// Instantiate the cipher
Cipher cipher = Cipher.getinstance(*'AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
byte[] encrypted =

cipher.doFinal((args.length == 0 ?

"This is just an example™ : args[0]).getBytes());
System.out.printIn("encrypted string: " + asHex(encrypted));

CNS Lecture 6 - 34 w

Rijndael in hardware

* 8-bit processor (emartcard)
—addroundkey is a bytewise XOR
—shiftrows is byte rotates
—subbytes is table lookup (256 byte table)
—mixcolumns is XORs and a table lookup (256 byte table)
* 32-bit processor
—Operate on 32-bit words rather than bytes
—4 table lookups and four XORs per column per round (fast)
—Need 4 256-word (1024 byte) tables
* Can trade off memory space for computation time

CNS Lecture 6 - 35

AES selection criteria

* security

* software implementations Cljava, &/32./64-bit processors
* ROM/RAM requiretments

* hardware implementations ASIC/FPGA

* instruction-level parallelism

* opeed

* susceptibility to timing/power attacks

* encryptionvs decryption

* key agility (switch keys quickly)

* versatility (block/key/round sizes)

CNS Lecture 6 - 36 w

AES assessment

* high security: mars, serpent, twofish

* software: rijndael good 6-64, rc6 good, serpent slow
* key sched: riindael fast, twofish slow

* space: rijndael/ serpent good. mars not.

* hardware: serpent/rijndael good. mars average.

* attacks: serpent/rijndael good. twofish ok. rc6/mars bad
enc/ dec: twofish, mars, rc@ good. rijndael ok. serpent last.

* key agility: twofish/serpent good. rijndael ok. rc6 last.
* parallelism: rijndael best.

*Votes:
riindael(86), serpent(59), twofish(31), rc6(23), mars(13)

CNS Lecture 6 - 37

Choosing AES

(Table from Twofish Paper)

Speed Speed Safety Simplicity
Cipher (32) &) Factor (code size)
Serpent 62 69 3.56 341KB
MARS 23 34 1.90 &5 KB
RC6 15 43 118 45 KB
Rijndael 18 20 1 98 KB
Twofigh 16 18 2.67 104 KB
(cycles/byte encrypt)

CNS Lecture 6 - 38

Rijndael AES evaluation

General Security
Rigndae] as 50 known securify attacks. Rijndael uses 5-5oxes a5 sonliness composeats.
Rijndael appears 1o have an adequate security margin, but has received some criticism
g ¥ head to atracks. On the other hand the ssmple
structuse may have secumty analysis d of the AES

development process.

Saftware Implementations
Rigndae] performs encryption ad decrypaon very well acsoss a vaiety of platfosms.
Encluding S-bat and 64-bit platforms. asd DSPs. However, these is 3 ecrease in performasce
with the higher key sizes because of the increased number of rounds that are performed.
Rigndael's hagh inberest parallelssm facilitates the efficient use f PrOCESSOE FESCUCES,
resulting is very pocd softwase when ma
of mierleaving. Ripdael's key setap time is fast

pabile

Restricted-Space Environments
In gesesal. Rijodae] i very well suited for 1estricted-space eOvHONMEnts where eithes
encryption or decryption is implemented (but not both). It has very low RAM and ROM
sequarements. A drrwback is that ROM requitements will increase if both encryption and
decryption ase implemested ssmultaneously, Ahough it Appeass 10 Femasn switable for tese
environmests. The key schedule for decryption is separate from encryption

Hardware Implementations
Rigndae] has the highest troughput of asy of the finalists fos feedback modes and secoed
Bighest for noe-feedback modes. For the 192 and 256-bit key sizes, theoughpet falls in
standard and umolled implementations because of the additional nember of rounds. For fully
pipelimed the area but the Huougbput 35 umadfected

CNS Lecture 6 - 39

Rijndael AES evaluation cont.

Altacks on Implementations
The cperaticns used by Rijudse] are arsang the easiest 1o defend againss power and timing
attacks. The wse of maskeng technsques 1o provide Rijndael with some defense Jgaisst these
attacks does Dot cause significant performance dessadation relaive to the otber fisalists, ad
its RAM pequisement semasns reascnable. Rajndae] appears 10 §2: 3 major speed advantage
over its competiiors when such protections are considered

Encryption vi. Decryption
The encryption and decrypticon functions in Rijndae] diffes. One FPGA stady reports that the
imphemeatation of both encryption and decryption tikes about 60% more space thas the
implementation of encrypion alone. Rijndael's speed does pot vary sypnificanty between
encrypon and decrvption, although e ey setup performance &5 skowed fof decrypuon thag
for encryption.

Key Agility
Rijrctae] supposts an-e-fly sabkey fon encryption 3 onetime
execution of the ke schedule 10 penesate all subloeys Pro 10 the first decrypton with a
specific key. This places a sHeht rescurce busden o the key agility of Rijndasl

Other Versatility and Flexibility
Rijacdael fully supports block sizes and key sizes of 128 bits, 192 bits and 256 bits. in any
combination. In principle, the Rijadael structuce can accommodate amy block sizes and key
sizes that ane multiphes of 32, as well as changes in the samber of rounds that ae specifsed

Potential for Instruction-Level Paralletism
Fujwdac] bas aa encellent potenual for paralielisn tor a single ok encrypuon.

CNS Lecture 6 - 40

AES vs DES

* Can you match the DES steps with the Rijndael steps?

DES steps

Rifndzel
Generate sub-keys Shift-rows
Permutations Mix column
XOR sub-key with right half Byte substitution
XOR f() (S-box) with right half Add round key

Swap left and right Generate round keys

DES: substitution & permutation (tuned only for hardware)
AES (Rijndael): substitution & linear transform

CNS Lecture 6 - 41

CNS Lecture 6 - 42

Whirlpool (hash function)

* Uses AES-like encryption function (W) to mix bits
—Based on polynomial arithmetic but fast (shift’s and XOR’s)
—Added to OpenSSL 0.9.9

* 512-bit hash (faster than SHA-512)

* More secure? ... test of time

- -
e 1 M e 3 .l e

p: T

[

Figurs 136 Aeuage igest Generation Using Whiripood

AES and whirlpool hash

Table 12.2 Comparison of Whirlpool Block Cipler W and AES

w I AES
Block size ibits) 512 128
Key size (hits) 512 128, 192, or 256
Marrix Inpus is mapped row-wise Ingut is mapped colums-wise
orientation
Number of 10 10, 12, or 14
rounds
Key expansion W round function dedicared expansion algorithm
GFi2* Aaxtext+x?+ 1OID) | 2*+x*+x'+x+ 1{01IB)
polynomial
Origin of 5-box recursive stmchare malriplicative inverse in
GF(2%) plus affine
transformation
Origin of round | Swccessive entries of the 5- elements 2 of GF(2')
constants box
Diffusion layer | right nubtiplication by 8<8 | _left multiplication by $x3
circulant MDS matrix (1, 1, 4, | circulant MDS mamx (2, 3, 1,
1,8 5 2,9) - mix rows 1) - mix columns
Permutation shaft columns shift rows
CNS Lecture 6 - 43 ‘

Block cipher advances

« Variable key length

* Mixed operators (non-linear) (Bent functions)

* Key/Data-dependent rotations (RCH)

* Key-dependent S boxes (blowfish)

* Round-dependent functions

*» Whitening (XOR key material before first round and after last round)
* Comnplex sub-key generation (blowfish)

« Variable block lengths and rounds and substitution
* Operate on both halves (blowfish/RCB)

* Mitigate linear/ dif ferential cryptanalysis

* Optimized for hardware/software

Block cipher summary

substitution/permutation

* B4-bit or 128-bit blocks
* DES i
—smallkey ® (use BDES) R
—test of time
—widely available
—5Sboxes are strength
* IDEA -- optimized for hardware/software
* blowfigh -- key-dependent S-boxes, fast
* RC5 -~ input-dependent rotations
* CAST -~ nonlinear S-boxes, round-dependent functions
* Rijndael — S-boxes, optimized for hardware/software ,
AES witrer ©

Need key,padding, IV, and ECB/CBC/OFB/CFB/CTR

CCM - encryption and authentication

* Use 128-bit encryption (AES) to do both authentication and
encryption in one pass using same key (RFC 3610, NIST 800-
8C)

* Use AES-CBC to calculate authenticator over message and
nonce (e.g., message number)

* Append authenticator to message

* Use AES in counter mode to encrypt message and authenticator
* Two ercryptions per message block

* Many parameters to select, prepend mode to message

* Used in 802.16 (wireless MAN, WIMAX)

* Though it is best practice to use different key for authentication
and encryption, it's OK here to use one key because of “shared”
nonce

* Remember encryption does rot provide authentication

CNS Lecture 6 - 46 w

CNS Lecture 6 - 45 B
Stream ciphers l l
« encrypt abyte/bit at a time (telecomm) l . l
—XOR plaintext withkeystream P @K > C; nee - P = —

Decrypt C,®K > F, — - S T ——
keystream == pseudorandom number generator
« efficient in hardware
* much theoretical analysls (LFSR's)
« faster than block ciphers (hardware)
* synchronous (independent of plain/cipher), pad/OFB
« agynchronous (feedback) CFB
* easlly misused ®
* examples (many proprietary)
— one-time pad
—hash FRNG's
—OFB/CFB (can make ablock a stream)
—PKZIP
—RC4 (in802.11, PPTP, Lotus Notes, CDFD, SQAL, s5h,WORD/Excel)
—ADB (3 LFSR’s) in Europe’s GSM cell phone, US cellular ORYX 3 32-bit LFSRe
—EO (4 LFSR’s) for bluetooth

CNS Lecture 6 - 47 w

Encryption with a hash function
* (pre) compute a (pseudo) one-time pad (keystream)
b, =Hash(key. IV)
b, = Hash(key.b,,)
cc=p®b
p=¢ ®b
*why V7 why use key each time?
* stream cipher (byte at a time)
* exportable
* used by RADIUS/TACACS+
* error properties:
—change abitinc ?
—loseac?

CNS Lecture 6 - 48 w

CNS Lecture 6 - 44 w

Stream cipher from a block cipher

Figure .13 s-bit Cipher Feedback (CFB) Mode

* Either OFB or CFB mode or CTR
* Can pre-compute key stream in OFB or CTR

trademark of RSA Cipher | Ky Longth | S gy
* used in several products (WEP, SSL, WORD) = - .
« fast £ ; o
* synchronous, &x& S box (evolves) RCI | vl
Fill S box with 0 to 255 and take key K
i=0
for i = 0 to 255 // rearrange Sbox according to key
=0 +S; +K) mod 256

swap S; and S;

//stream generation

i = (i+1) mod 256

j = G+ S;) mod 256
swap S, and S; /7 rearrange Shox
t=(S, +5S) mod 256

b=5

v

XOR plain/cipher text byte with b

CNS Lecture 6 - 50 w

CNS Lecture 6 - 49 ‘
LFSR keystream
linear feedback shift registers
« efficient in hardware (shift XOR) | Il | | | E]' | |r | [| I | |I |I |]”

« where to tap (connection polynomial)

« full period (2" - 1) If polynomial ls X7T+x™+1
primitive mod 2

* example, x*+x+1 (1,0,0,1)

* n-bit "key" Is Initial setting (s

 cansolve single LFSR, so use several

« shrinking generator -- use output of
firet LFSR to select/drop bit of 2nd
LFSR

* GSM’s A5 uses XOR of 3 LFSRs e
* US cellular ORYX 3 32-bit LFSRs

applet animation

CNS Lecture 6 - 51 u

Combining LFSR’s

Alternating step generator Shrinking generator
select R, or Rybased on R, select R, only when R, outpute a 1

GSM A5

* B LFER’s with periods (19,22, and 23 - 64-bit key)
XP4xE4xZ 4 x+1 X224 x+ 1 %284 X164 %% 4 x +1

* Output “clocked” by majority function from taps at 8, 10, and 10
—Clocked means register is shifted with its new feedback input

* Without clocking, period would be (219 —1)(222 —1)(22% — 1), but experiments
show really only 4/3 (222 1)

* Only 70% of seeds produce different keystreams

CNS Lecture 6 - 53 w

! et
= b pm——
CNS Lecture 6 - 52 w
SNOW
« Yersion 1weak, version 2 better g
* LFSR (16x32 bits) plus finite ©
state machine (FSM) ~bRI TR I
* 32-bit operations /output |
« &x8 bit 5 box B
* 128 or 256 bit key o @ 1
*128-bit IV — T

CNS Lecture 6 - 54 w

LFSR summary

I My
! bt [
a— -1 — e —J
o il aane - S _l-. ..| -l
*Fast/simple in hardware

*Subject to correlation attacks with known plaintext
*Need non-linear combinations

+Use “secret” connection polynomial (c))

Polynomial arithmetic over GF(2") used in Rijndael, CRC's, ECC, and LFSR's

CNS Lecture 6 - 55 ‘

Performance (MBs)

Choosing a cipher MD5 204
RIPEM 53

SHA 73

Panama 302

* depends on application

* type: stream or block 212 19
pet Skipiack 20

* block mode: CBC, ECB, OFB, CFB, CTR DES 2
* compact (smart card) 3DES 10
. o ! RC5 59
strength (key length, lifetime, test of time) Blowfish P

« licence? Rindael 62
* avallabllity/portablility RC4 13

* performance 2.1GHz pentium 4

« error properties (mods/losses) — you need separate integrity check (hash)
* tested, widely used

* Worry about padding and IV

* OpenSSL: DES, BDES, DESX, blowfish, AES, RC4, Cast

 don’t build your own or buy snake oil

CNS Lecture 6 - 57 [T iiny (554

Stream ciphers

* Byte or bit based
* Efficient in hardware (LFSR) based on XOR ¢,=p @ g,
* The ultimate: ONE-TIME PAD, everything else repeate ®
* Hash-based PRNG’s are good approximations
» TROUBLE if you re-use the key streaml
—If plaintext/ciphertext pair known, you have the keystream
—If PRNG period too short (WEF/RC4 GSM), key stream will repeat

—If you have multiple plaintext’s encrypted with same keystream (Microsoft
Excel/WORD), you can XOR ciphertexts and with word/character
frequencies derive plaintexte P11 @®F2

see Dawson/Nielsen

Use ablock cipher if you can.

CNS Lecture 6 - 56 w

Snake oil

* pseudo-mathematical gobbledygook
— Unique in-house developed incremental base shift algorithm
—virtual matrix of binary values which is infirity in size in theory
—utilizes DGNT bulk encryption method

* new mathematics -- chaotic functions, neural nets, zeta functions

* revolutionary breakthrough

* proprietary crypto -- trust us

* extreme cluelessness -- unbreakable

* ridiculous key lengths

* one-time pads

* unsubstantiated claims —* scientifically acclaimed... military gradé

* security proofs —* proved as secure a5 2 one-time pad”

* exportable

* “not broken by Tom’s cnsO6 students”
— cracking contests don't guarantee security

CNS Lecture 6 - 58 w

PAIN

Does symmetric key encryption provide:
* Privacy?

* Authenticity?

* Integrity?

* Non-repudiation?

* Availability?

* Virus protection?

CNS Lecture 6 - 59 w

Key management

* key generation

* key length

« key lifetime, archiving
« key distribution

PKI (later)

* PKlissues (later)
« key recovery

* protecting keys

CNS Lecture 6 - 60 w

10

Key generation

choose strong keys
* passwords/phrases
—length
—mixture: upper, lower, 6pecia[, numerics
—good generator/verifier
—dictionary attacks
* random keys
—unpredictable
—random sources (keystrokes, system info, /dev/random)
—tixing (MDD, X9.17)
—watch out for rand()

CNS Lecture 6 - 61 w

Brute force key attacks

symmetric key

* time and cost

* software, FPGA, ASIC

* hacker, corporate, government

* 40-bit key: $400 FPGA, 5 hours
* EFF DES cracker $250K, 3 days

* DES key breaking ($1M/4 hr.) within budget of
large corporation or criminal organization

» $300M, DES keys in 12 seconds
* 75-bit, $10M/6 yre, $300M/70 days
* recommend 75-90 bit keys today , 128

CNS Lecture 6 - 63 w

Key lifetime

« lifetime is a function of keylength (work factor for brute force)
* the more a key is used, the greater the loss if compromised
* the longer akey is used, the more likely it will be compromised
« lifetime of info (message, signature, file)
* amount of data encrypted can determine lifetime

—bad guy accumulates ciphertext for cryptanalysie

—for DES, don't send more than 252 bits under the same key

at 1Gbit/sec, 5 minutes

* key hierarchy (master key, session key)

—Use master key only to encrypt temporary session keys

CNS Lecture 6 - 65 w

Key length ﬂ\

Size matters

* depends on value of information and resources of attacker

* depends on lifetime of secrets

* assume algorithm perfect, thenbrute force

* one more bit: of key, doubles attacker’s work factor (exponential)

type lifetime key Ith bits
tactical military minutes 56-64
product announce days 64
business plan years 64
trade secrets decades 112
nuclear secrets 40 yrs 128
spy IDs 50 yrs 128
personal info 50 yrs 128

« 128-bit key:

using all the computers in the world, and if they could do a million
ercryptions/sec, it would take a million times the age of the universel

(AES key sizes: 128, 192, 256)

CNS Lecture 6 - 62 w

Brute force

* equivalent resistance to attack (key length in bits)

Symmetric Public
56 384

64 512

80 768
112 1792
128 2304

ref. Schneier

* public key vulnerable to improvements in factoring algorithms
(or discrete logs)

CNS Lecture 6 - 64 w

Updating keys

* Kerberos/PEM/PGP /PKl include ticket/key lifetime fields
* password aging
* public keys, typically 2 yrs max
* may need key archive (key id with material), or re-key material
« archive CRL’s too (PKI Certificate Revocation List ...later)
« rigk in distributing new keys
—need (secure) key renewal, key update protocol
—Perfect forward secrecy (don’t use old key to generate/send new key)

CNS Lecture 6 - 66 w

11

Key distribution %

How to get keys (code books, one-time pads) to the end users?‘
* courier ®
—Codebook (enigma) get key of the day
« secret keys -- out of band, splitting
* third party generates key and delivers to A and B
« KDC (Kerberos/DCE) -~ must be secure
* key update using old key ®or key encrypting key/master key ©
« [SAKMP/0zkley, SKIP, Photuris (IPsec)
set up key on behalf of application
« Diffie-Hellman (perfect forward secrecy)
* public key cryptography

CNS Lecture 6 - 67

KDC — _n...:.:.--u
Gornaer KDY
key distribution center >/ G
- P
« N2keys for N nodes A Wi i
—orne for every pair ®)2/{“» i
. KDC: .\‘.-.ynh- J e i

—Just N KDC keys for N users

—KDC generates session key for Bob and Alice, sends
it to them encrypted with their respective KDC key

—KDC must be secure
« protocol for requesting session key
* More on key distribution when we look at Kerberos

CNS Lecture 6 - 68 w

Key recovery

key recovery is when | can find out my key.
Key escrow is when you can find out my key.

* good business sense
* key escrow
—Clipper chip —big brother >
—clipper Il -- and export carrot
* commercial recovery (Entrust)
* secret sharing (m.n) threshold
—soplit secret intonparts (n>m)
—any m of them can be used to reconstruct secret
—several algorithms (Schneier) (Shamir: m-degree polynomial)
* part of aPKI? -- encrypt message key with CA’s key too?

Key escrow the NSA way

Escrowed Encryption Standard (EES)

* FIP5 1865
* permit decrypting bad guys messages
* key would be split in half
* two government agencies would hold halves
* court order would allow gathering two halves
« inducement: US let you use bigger key, if you use EES |
* bad public relations
—rushed announcement, which agencies?
—not pre-released to security community
—not clearly justified
—no provision for review by Congress, public,...
* Clipper chip — animplementation

CNS Lecture 6 - 70 w

CNS Lecture 6 - 69 -4
Clipper chip
« Alice and Bob create asessionkey k (Diffie-Heliman, KEA,...)
« clipper encrypts message Mwith Skipjack E,(M)
* LEAF is tranemitted with encrypted message
Law Enforcement Agent’s Field (128 bits)
EE (K).id.ac)
—f secret family key (chips know, Key Escrow Decrypt Processor knows)
—idis chipid (32b)
—ac authentication code (16b)(used by receiving chip to verify authentic LEAF)
receiver won't “decrypt” if LEAF is “bad”
—u chip-specific key
u =kl @k2is split between two agencies = given K1 and k2, construct u
* MYK-80 MB/sec (includes hardware random generator)
* Example, telephone encryptor, link encryptor, FORTEZZA card
* e.9, wiretap captures encrypted message and LEAF, court order gets you k1 andk2
CNS Lecture 6- 71 w

skipjack

* NSA encryption for Clipper chip (FORTEZZA)
* algorithm secret (£il°98), hardware tamper-resistant
* reviewed by panel of experts
* strength not dependent on secrecy of algorithm
* design started in’65
* evaluation completed in’90
* 5pecs
iterative block cipher
64-bit block
80 bit key
32 rounds, XOR

4x16 bit shift register/counter with 4-round Feistel using 8x8
S box

CNS Lecture 6 - 72 w

12

Protecting keys

* don't Postlt
* one-time passwords or encrypted channel (ssh)
* encrypt private key
* key renewal
* worry about trojan horees, keyboard sniffers
* strong protection of KDC and CA’s
* strong protection of backups
* tamperproof hardware
—token/Fortezza card
— CA Certificate Signing Unit (CSU)

CNS Lecture 6- 73

Where to encrypt? - —

link layer

* encrypting modem, net board (wireless)
* transparent.fast

« sultable for privatenet

* protects only orelirk (pt-to-pt)

+ infomaybe exposed n 05
network/transport layer

swlPe, Pv&(IPsec)

transparent e
selectable (policy) - .

appl./host/net keying o o bk e e e e L

Works over public net b (T e ——— -
virtual private network (VPN)

system layer: encrypting file systems (EFS/CFS)

application layer

« end-to-end over public net

* custom applications (PGP, ssh, ssl)

* intrusive, but flexble

« APl for applioation development:

* key for every logical ciruit

CNS Lecture 6 - 74 w

Traffic analysis

encrypted traffic threats

* covert channels
* who's talking to whom
. frequerlcy, event correlation
* quantity, length, patterns of messages
* countermeasures
—padding messages
—continuous/random traffic .

Figare 75 Traff: Pabling e ypies Buevare

CNS Lecture 6 - 75

review

Attacks & Defenses Cryptography Applied crypto

*Rick asoesomenty’ «Randomnumbersy’ «SSH

o Vi v
Viruses *Hash functionsv’ PGP
« Unix securityv’

Review
Lectures
Risk, viruses
UNIX vulnerabilities
* Lectures Authentication & hashing

Random #s classical crypto

AES, stream ciphers RC4, LFSR
MIDTERM ®
Public key crypto RSA, D-H
. ECC, PKCS, ssh/pgp
[10. PKI, SSL
11. Network vulnerabilities
12. Network defenses, IDS, firewalls

i§
P.
B.
.
|5. Block ciphers DES, RC5
6.
7.
B.
o.

[13. IPsec, VPN, Kerberos, secure OS
14. Secure coding, crypto APIs

5. review

http://www.cs.utk.edu/~dunigan/cns06/midrvw.txt

CNS Lecture 6 - 77

« authenticationy’ MD5, SHA,RIPEMD *S/Mime
* Network security «Classical + stegoy’ *SSL
Firewals.vpn.FPeec.DS *Nummber theory Kerberos
*Symmetric keyv’ IPsec
DES, Rijndzel, RCS
*Public key
RSA, DSA, D-HECC
CNS Lecture 6 - 76 w
Next time ...
Mid-term

part 1: take-home (analysis of MISTY1 cipher), work on your own

see midterm (class7.html)

part 2:in class (open book/notes/...) next Tuesday, you'll need your textbook

CNS Lecture 6 - 78 w

13

