
1

CNS
Lecture 6

Block ciphers -- AES (Rijndael)

Stream ciphers

Key management

review

assignment 5 A

assignment 6

CNS Lecture 6 - 2

In the news

• Microsoft IE Active X remote code execution
• Microsoft powerpoint remote code execution (0-day)
• MAX OS X multiple vulnerabilities
• OpenSSL ASN.1 remote buffer overflow
• gzip, firefox, Adobe flash player, …

CNS Lecture 6 - 3

You are here …

Attacks & Defenses
• Risk assessment9
• Viruses9
• Unix security9
• authentication9
• Network security

Firewalls,vpn,IPsec,IDS

Cryptography

•Random numbers9

•Hash functions9

MD5, SHA,RIPEMD

•Classical + stego9

•Number theory

•Symmetric key

DES, Rijndael, RC5

•Public key

RSA, DSA, D-H,ECC

Applied crypto

•SSH

•PGP

•S/Mime

•SSL

•Kerberos

•IPsec

CNS Lecture 6 - 4

Block cipher modes

• ECB, CBC, CFB, OFB, CTR
• applies to all block ciphers
• Padding, chaining and IV’s
• hide repeated plaintext
• different error/attack properties

encryption does not guarantee message integrity!

CNS Lecture 6 - 5

Padding, IV’s, and key generation in OpenSSL

• Encryption will pad to block size of cipher (DES: 8 bytes, AES 16)
– E.g., 3 bytes in Î8 encrypted bytes out, 21 in Î 24 out
– May want to pre-pad with random “salt” to obscure same message

• OpenSSL standard API encryption pads with bytes of IV
– EVP methods pads with byte count (PKCS 5)

and pre-pends 8-byte magic “Salted__” and 8 byte random salt
– openssl des-cbc: 7 bytes in Î 24 encrypted bytes out, 8 bytes in Î 32 encrypted

bytes out
• Cipher may be attackable if attacker knows IV

– Best practice: derive IV from shared secret (asnmt 7) + nonce?
– Need different IV when restarting encryption
– OpenSSL EVP optionally derives IV from MD5 of key

• Converting a password to a key
– Assignment 7 uses MD5
– OpenSSL EVP_BytesToKey() generates key and IV from password using MD5

CNS Lecture 6 - 6

Block ciphers

Feistel
• DES
• Lucifer
• blowfish
• CAST

non-Feistel
• IDEA
• RC2, RC5
• AES (Rijndael)
• For non-feistel need invertible operations

substitution and permutation

•performance (time/space) vs strength
•large keys
•strong subkey generation
•large blocks
•simple operations, non-linear functions (S-box, rotate)
•iterative, more rounds
•resist known attacks (diff./lin.)
•ciphertext should have uniform distribution (look random)

2

CNS Lecture 6 - 7

AES
Advanced Encryption Standard
• replace DES
• '97 call for algorithms

–royalty free, publicly disclosed
– 128-bit block symmetric key cipher
–key-sizes: 128, 192, 256

evaluation criteria
• security
• cost/performance (memory, computational efficiency)
• architecture -- simplicity, flexibility
• hardware/software suitability

• '98 15 candidates
• '99 5 finalists (MARS, RC6, Rijndael, Serpent, Twofish)

Other crypto bake-offs

Europe: NESSIE

Japan: CRYPTREC

CNS Lecture 6 - 8

Mars (IBM)

• Feistel (1/4, 3/4 rather than even split)
• 8 (unkeyed) pre/post-whitening rounds

–addition, XOR, and 512x32 S-box (32-bit
words)

• 16 keyed rounds
–addition, XOR, and S-box, multiplication,

data-dependent rotations, key addition
• S-box: pseudo-random and tested
• key schedule: linear transform and S-box, with

pattern matching to eliminate weak subkeys
keys copied in to T[i]

CNS Lecture 6 - 9

serpent

• substitution-linear transform network
• non-feistel – need inverse S-boxes and inverse transform
• 256-bit key, 128-bit blocks, 32-bit work unit
• bit-slice mode
• 8 4x4 DES-like S-boxes

– pseudorandom with testing
• 32 rounds (most secure, slow)

– XOR, S-boxes, linear transform
– avalanche after 3 rounds

• key schedule: affine recurrence with S-boxes
33 128-bit subkeys

• RC6 (son of RC5)
• Twofish (son of Blowfish)

Linear transform (L)

user key wi

CNS Lecture 6 - 10

Rijndael
rhine-doll (or rain doll)

• son of Square cipher
• substitution-linear transform network

non-feistel (need inverse)
• plaintext block (16 bytes) treated as 4x4 array (state array)
• 10/12/14 rounds (128/192/256 key size)

S-box, row shifts, column mixing, key-XOR
• key schedule: S-box, constants with XOR, rotates
• 16x16 S-box (256 bytes)
• For decryption need inverse S-box and inverse mixcol
• Rijndael uses polynomial arithmetic (S boxes and mixcol)

a(x) = a3x3 + a2x2 + a1x +a0 mod (x4 + 1)
coefficients (bytes) ai are in GF(28)

CNS Lecture 6 - 11

Rijndael setup – key expansion

• Key expansion (16B key Æ 1 76B subkeys)
– g: byte rotate, S-box, XOR with consti
– Subkey (4 4-byte words) for each round plus

one more subkey
– For AES-128, 11 subkeys (10 rounds + 1)

• Rationale
– Resistant to attacks
– Round constants eliminate symmetry
– Knowledge of some bits of key or subkey does

not help calculating other subkeys
– Diffusion
– Speed
– Can generate subkeys on the fly (time/space)

bytes

words

repeat

Combine words into subkeys

CNS Lecture 6 - 12

Rijndael setup -- S box setup
• S-box (and inverse S-box) (256-byte) can be calculated or

pre-built (time vs memory) (permutation of all 256 bytes)

• Rationale
–Low correlation between input and output bits
–Must be invertible
–Step 3 prevents interpolation attacks and eliminates

S(a)=a and S(a)=a’
–Only non-linear transform of cipher

S-box creation:
1. initialize to 00 … FF

2. calculate multiplicative inverse of each element
over GF(28) mod x8+x4+x3+x+1

3. transform bits of byte with XOR with constant

Example: 97 Æ 88

3

CNS Lecture 6 - 13

Encryption/decryption

Encryption is not identical to decryption.
Decryption is same sequence of

transformations, but using inverse transforms
Change of subkeys needed
Need rounds+1 subkeys
Note last round has no mixcolumn
First/last step is add round key … why?

CNS Lecture 6 - 14

Rinjdael stages

•Byte substitution -- S-box (nonlinear, strength)

•Shift rows – permutation (diffusion)

•Mix columns – substitution using arithmetic over GF(28)
-multiplies data array with constant array
-multiplication is polynomial multiplication

mod x4 + 1 over GF(28)
-- easy in hardware and fast
table-lookup in software (256-entry multiplication table)

-each element of a column is function of all the elements
of the column (mixing)

•Add round key – XOR with round key (simple Vernam/XOR cipher)

-on 32-bit processor, round transformation can be done in set of table lookups
-table lookups contribute to speed of Rijndael and prevent timing/power attacks
- Potential for parallelism and each stage is reversibleÆ decryption works

round
key data/state

16 bytes data/state

CNS Lecture 6 - 15

Rijndael data structures

• 128-bit (16 byte) data block treated at 4x4 byte array

CNS Lecture 6 - 16

Rijndael round

CNS Lecture 6 - 17

Row and column transformations

Row transform

•Row 1 -- unchanged

•Row 2 – rotate left 1 byte

•Row 3 – rotate right 2

•Row 4 – rotate right 1
The row transform shifts column values,
the 4 bytes of one column are spread out
to four different columns.

Mix column

each byte of a column is mapped

into a new value that is a function

of all four bytes in the column.

matrix multiply is over GF(28)
After a few rounds, all output bits depend on all input bits.

CNS Lecture 6 - 18

Substitute byte and add round key

⊕

4

CNS Lecture 6 - 19

Rijndael decryption

•Each stage is reversible

alter direction of shift rows

invert Sbox

Invert mixcolumn (mod x4 + 1)

a(x) = {03}x3 + {01}x2 + {01}x + {02}

a-1(x) = {0B}x3 + {0D}x2 + {09}x + {0E}

•Modified round key

pre-calculate when making subkeys

So decryption differs slightly from encryption

CNS Lecture 6 - 20

The mathematics of cryptography

Finite (discrete) mathematics

•Modular arithmetic (shift ciphers, polyalphabets, Hill cipher)

•Primes and prime factors, greatest common divisor, BIG integer libraries

•Linear transforms (row/column transpositions, linear algebra)

•Exponentiation/discrete logs (D-H, RSA)

•Polynomial arithmetic (CRC, AES, LFSR, ECC)

•Elliptic curves (ECC)

CNS Lecture 6 - 21

Finite field of dreams

• What we’d like is arithmetic over a finite field
–Computers do better with finite (discrete) arithmetic
–Field is associative, commutative, etc, with additive inverse,

multiplicative inverse
–Works for arithmetic mod a prime, e.g (5/4) mod 7 = 3
–But computer “words” are usually powers of 2, (5/4) mod 8 = /

• Stay tuned … corn fields, wheat fields, Galois fields ☺

CNS Lecture 6 - 22

Rijndael and polynomial arithmetic

• Rijndael utilizes polynomial arithmetic in two ways (really one)
–Invertible arithmetic (finite field) over 8-bit numbers (+ x)

invertible S-box
linear transforms (mixcolumn)

–4-byte arithmetic (constant poly is relatively prime to x4 + 1)
Invert mixcolumn mod (x4 + 1)
a(x) = {03}x3 + {01}x2 + {01}x + {02}

Polynomial arithmetic used by CRC's, Rijndael, LFSR's, ECC

CNS Lecture 6 - 23

Polynomial arithmetic
• addition and multiplication

(3x4 + 5x2) + (x3 + 6x2) = 3x4 + x3 + 11x2

(3x4 + 2x3) (x +1) = 3x5 + 5x4 + 2x3

• division: 3x7 + x5 + x2 - 2 divided by x4 -1
equals 3x3 + x with remainder 3x3 + x2 + x – 2

• Coefficients can be integers or mod p (Zp)
((3x4 + 5x2) + (x3 + 6x2)) mod 7 = (3x4 + x3 + 11x2) mod 7 = 3x4 + x3 + 4x2

see CRC reading or Rijndael spec or text Ch 4 and Ch. 5 appendix

CNS Lecture 6 - 24

Polynomial arithmetic over GF(2)
• hardware influence: use coefficients mod 2

–Think of each bit as a coefficient
– addition/subtraction is XOR, multiply is AND

• polynomial: x3 + x + 1 is 1011
(x + 1) (x2 + x) = x3 + x2 + x2 + x = x3 + x

• Hardware/software: fast, XOR and table lookups

Galois fields: finite fields of
order pn, written GF(pn)

5

CNS Lecture 6 - 25

Modular polynomial arithmetic over GF(2n)

• Do polynomial multiplication mod an irreducible polynomial
• Notion of prime/irreducible polynomials

f(x) is irreducible if it cannot be expressed as product of two polynomials
GF(28) has 30 irreducible polynomials, Rijndael uses the first one ☺

x8 + x4 + x3 + x + 1

• Primitive polynomials (a subset of irreducible polynomials) generate all elements of an
extension field from a base field (used in LFSR)
Over GF(2n) there are φ(2n – 1) / n primitive polynomials
φ(n) number of elements relatively prime to n (Euler’s totient)
n primitive polynomials
1 x+1
2 x2 + x + 1
3 x3 + x + 1, x3 + x2 + 1
4 x4 + x + 1, x4 + x3 + 1 (x4 + x3 + x2 + 1 is irreducible but not primitive)

CNS Lecture 6 - 26

poly arithmetic in GF(28)

• Extended Euclid algorithm can be used to find the multiplicative inverse
of a polynomial (exists if mod irreducible polynomial)

Result: (x7 + x + 1)-1 = x7

or 10000011 x 1000000 = 00000001

CNS Lecture 6 - 27

modular polynomial arithmetic over GF(23)
Finite field GF(23) – only two irreducible polynomials: x3 + x2 +1 x3 +x + 1

Multiplication by x (010): shift left, if bit shifted out is 1 XOR in 011

If m(x)= x3 +x + 1 then x3 mod m(x) = m(x) – x3 = x+1 ↔ 011

Addition is just XOR

CNS Lecture 6 - 28

Modular poly arithmetic comparison (3-bit)

mod x3 + x + 1
See previous slide

Multiplication is just shift and XOR

Every element has a multiplicative inverse

Now 5/4 has a solution ☺ = 2

(5/4) mod 8 =(5 * 4-1) mod 8
/ no solution

CNS Lecture 6 - 29

Rijndael poly arithmetic

•Coefficients of polynomial in GF(28) represented by 8-bit number (byte)
•Addition of two polynomial is just XOR of the two 8-bit numbers

(x6 + x4 + x2 + x +1) + (x7 +x + 1) = x7 + x6 + x4 + x2

01010111 + 10000011 = 11010100
•Multiplication is more complicated (need modular reduction), but still is just
shifts and XORs

Rijndael prime poly: x8 + x4 + x3 + x + 1
For multiplication by x, a shift and XOR in 00011011

Mixcolumn does modular poly multiply mod (x4 + 1) (e.g. 4 bytes, each in
GF(28))

({03}x3 + {01}x2 + {01}x + {02}) mod (x4 + 1)

but it is implemented as multiply and add on GF(28)

CNS Lecture 6 - 30

CRC’s and polynomial arithmetic -- sidebar

3 2 1 0 bytes

0

255

register

table

data stream

1. Shift the register left by one byte,
reading in a new message byte.

2. XOR the top byte just rotated out of
the register with the next message
byte to yield an index into the table
([0,255]).

3. XOR the table value into the
register.

4. Goto 1 iff more message bytes.

⊕

•CRC is remainder in dividing message by polynomial

Think of message as long string of bits (polynomial)

•Can be implemented with XOR’s, shifts, and a table lookup

Fast in hardware. in C
r=0; while (len--) r = (r<<8) ^ t[(r >> 24) ^ *p++];

•CRC polynomials chosen to detect “common” errors

•All single bit errors

•All 2-bit errors

•N-bit errors bursts

•Worry about what errors are not detected?

•Some popular CRC polynomials:

16 bits:

(16,12,5,0) X25 standard x16 + x12 + x5 + 1

(16,15,2,0) "CRC-16“

32 bits:

(32,26,23,22,16,12,11,10,8,7,5,4,2,1,0) Ethernet

10011 1010100011010101

6

CNS Lecture 6 - 31

Rijndael in C
/* BC byte count rk round key S sbox*/
/* plaintext in a */
KeyAddition(a,rk[0],BC);

/* ROUNDS-1 ordinary rounds */
for(r = 1; r < ROUNDS; r++) {

Substitution(a,S,BC);
ShiftRow(a,0,BC);
MixColumn(a,BC);
KeyAddition(a,rk[r],BC);

}

/* Last round is special: there is no MixColumn */
Substitution(a,S,BC);
ShiftRow(a,0,BC);
KeyAddition(a,rk[ROUNDS],BC);

CNS Lecture 6 - 32

Rijndael/AES in OpenSSL
• Command line (uses EVP mode, prepend magic and salt, pad with byte count)

aes-128-cbc aes-128-ecb aes-192-cbc aes-192-ecb
aes-256-cbc aes-256-ecb

openssl aes-256-cbc -in plain.txt -out enc.dat -pass pass:boo

• API
#define AES_BLOCK_SIZE 16
int AES_set_encrypt_key(const unsigned char *userKey, const int bits,

AES_KEY *key);
int AES_set_decrypt_key(const unsigned char *userKey, const int bits,

AES_KEY *key);
void AES_cbc_encrypt(const unsigned char *in, unsigned char *out,

const unsigned long length, const AES_KEY *key,
unsigned char *iv, const int enc);

enc is either AES_ENCRYPT or AES_DECRYPT

Result of encryption will be rounded up to a multiple of block size (16)
with IV padding. (e.g., you encrypt 3 bytes, you get 16 bytes out)

IV will be updated.
You need to set up the key specifically for encryption and again for

decryption, since AES has a different key schedule for encryption
and decryption

CNS Lecture 6 - 33

example
#include <openssl/aes.h>

static const unsigned char key16[16]=
{0x12,0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,
0x34,0x56,0x78,0x9a,0xbc,0xde,0xf0,0x12};

unsigned char iv[16],tmpiv[16];

main()
{

char out[4096],in[4096], *str="123456789abcdefghij";
AES_KEY aeskey;
int lth;

lth = strlen(str) + 1;
strncpy(in,str, lth);

AES_set_encrypt_key(key16,128,&aeskey);
memcpy(tmpiv,iv,sizeof(iv));
AES_cbc_encrypt(in,out, lth, &aeskey, tmpiv,AES_ENCRYPT);
AES_set_decrypt_key(key16,128,&aeskey);
memcpy(tmpiv,iv,sizeof(iv)); //reset IV
AES_cbc_encrypt(out,in, sizeof(out),&aeskey, tmpiv,AES_DECRYPT);
printf("%s\n",in);

}

See ~dunigan/cns06/aes.c and assignment 7

CNS Lecture 6 - 34

AES and java (see ~dunigan/cns06/aes.java)

// Get the KeyGenerator
KeyGenerator kgen = KeyGenerator.getInstance("AES");
kgen.init(128); // 192 and 256 bits may not be available
SecretKey skey = kgen.generateKey();
byte[] raw = skey.getEncoded();
SecretKeySpec skeySpec = new SecretKeySpec(raw, "AES");
// Instantiate the cipher
Cipher cipher = Cipher.getInstance("AES");
cipher.init(Cipher.ENCRYPT_MODE, skeySpec);
byte[] encrypted =

cipher.doFinal((args.length == 0 ?
"This is just an example" : args[0]).getBytes());

System.out.println("encrypted string: " + asHex(encrypted));

CNS Lecture 6 - 35

Rijndael in hardware

• 8-bit processor (smartcard)
–addroundkey is a bytewise XOR
–shiftrows is byte rotates
–subbytes is table lookup (256 byte table)
–mixcolumns is XORs and a table lookup (256 byte table)

• 32-bit processor
–Operate on 32-bit words rather than bytes
–4 table lookups and four XORs per column per round (fast)
–Need 4 256-word (1024 byte) tables

• Can trade off memory space for computation time

CNS Lecture 6 - 36

AES selection criteria

• security
• software implementations C/java, 8/32/64-bit processors
• ROM/RAM requirements
• hardware implementations ASIC/FPGA
• instruction-level parallelism
• speed
• susceptibility to timing/power attacks
• encryption vs decryption
• key agility (switch keys quickly)
• versatility (block/key/round sizes)

7

CNS Lecture 6 - 37

AES assessment

• high security: mars, serpent, twofish
• software: rijndael good 8-64, rc6 good, serpent slow
• key sched: rijndael fast, twofish slow
• space: rijndael/serpent good. mars not.
• hardware: serpent/rijndael good. mars average.
• attacks: serpent/rijndael good. twofish ok. rc6/mars bad

enc/dec: twofish, mars, rc6 good. rijndael ok. serpent last.
• key agility: twofish/serpent good. rijndael ok. rc6 last.
• parallelism: rijndael best.

• Votes:
rijndael(86), serpent(59), twofish(31), rc6(23), mars(13)

CNS Lecture 6 - 38

Choosing AES
(Table from Twofish Paper)

104 KB2.671816Twofish

98 KB1.112018Rijndael

48 KB1.184315RC6

85 KB1.903423MARS

341 KB3.566962Serpent

Simplicity
(code size)

Safety
Factor

Speed
(8)

Speed
(32)Cipher

(cycles/byte encrypt)

CNS Lecture 6 - 39

Rijndael AES evaluation

CNS Lecture 6 - 40

Rijndael AES evaluation cont.

CNS Lecture 6 - 41

AES vs DES

• Can you match the DES steps with the Rijndael steps?

Rijndael

Shift-rows

Mix column

Byte substitution

Add round key

Generate round keys

DES steps

Generate sub-keys

Permutations

XOR sub-key with right half

XOR f() (S-box) with right half

Swap left and right

DES: substitution & permutation (tuned only for hardware)

AES (Rijndael): substitution & linear transform

CNS Lecture 6 - 42

Whirlpool (hash function)
• Uses AES-like encryption function (W) to mix bits

–Based on polynomial arithmetic but fast (shift’s and XOR’s)
–Added to OpenSSL 0.9.9

• 512-bit hash (faster than SHA-512)
• More secure? … test of time

8

CNS Lecture 6 - 43

AES and whirlpool hash

CNS Lecture 6 - 44

Block cipher advances

• Variable key length
• Mixed operators (non-linear) (Bent functions)
• Key/Data-dependent rotations (RC5)
• Key-dependent S boxes (blowfish)
• Round-dependent functions
• Whitening (XOR key material before first round and after last round)

• Complex sub-key generation (blowfish)
• Variable block lengths and rounds and substitution
• Operate on both halves (blowfish/RC5)
• Mitigate linear/differential cryptanalysis
• Optimized for hardware/software

CNS Lecture 6 - 45

Block cipher summary

substitution/permutation

• 64-bit or 128-bit blocks
• DES

– small key / (use 3DES)
– test of time
– widely available
– S boxes are strength

• IDEA -- optimized for hardware/software
• blowfish -- key-dependent S-boxes, fast
• RC5 -- input-dependent rotations
• CAST -- nonlinear S-boxes, round-dependent functions
• Rijndael – S-boxes, optimized for hardware/software ,

AES winner ☺

Need key,padding, IV, and ECB/CBC/OFB/CFB/CTR

CNS Lecture 6 - 46

CCM – encryption and authentication

• Use 128-bit encryption (AES) to do both authentication and
encryption in one pass using same key (RFC 3610, NIST 800-
38C)

• Use AES-CBC to calculate authenticator over message and
nonce (e.g., message number)

• Append authenticator to message
• Use AES in counter mode to encrypt message and authenticator
• Two encryptions per message block
• Many parameters to select, prepend mode to message
• Used in 802.16 (wireless MAN, WiMAX)
• Though it is best practice to use different key for authentication

and encryption, it’s OK here to use one key because of “shared”
nonce

• Remember encryption does not provide authentication

CNS Lecture 6 - 47

Stream ciphers

• encrypt a byte/bit at a time (telecomm)
– XOR plaintext with keystream Pi ⊕ KiÆ Ci
Decrypt Ci ⊕ KiÆ Pi
keystream == pseudorandom number generator

• efficient in hardware
• much theoretical analysis (LFSR's)
• faster than block ciphers (hardware)
• synchronous (independent of plain/cipher), pad/OFB
• asynchronous (feedback) CFB
• easily misused /
• examples (many proprietary)

– one-time pad
– hash PRNG's
– OFB/CFB (can make a block a stream)
– PKZIP
– RC4 (in 802.11, PPTP, Lotus Notes, CDPD, SQL, ssh,WORD/Excel)
– A5 (3 LFSR's) in Europe's GSM cell phone, US cellular ORYX 3 32-bit LFSRs
– E0 (4 LFSR's) for bluetooth

CNS Lecture 6 - 48

Encryption with a hash function
• (pre) compute a (pseudo) one-time pad (keystream)

b1 = Hash(key, IV)
bi = Hash(key,bi-1)

• ci = pi ⊕ bi

• pi = ci ⊕ bi

• why IV? why use key each time?
• stream cipher (byte at a time)
• exportable
• used by RADIUS/TACACS+
• error properties:

–change a bit in ci ?
–lose a ci?

9

CNS Lecture 6 - 49

Stream cipher from a block cipher

• Either OFB or CFB mode or CTR
• Can pre-compute key stream in OFB or CTR

OFB

CNS Lecture 6 - 50

RC4
trademark of RSA
• used in several products (WEP, SSL, WORD)
• fast
• synchronous, 8x8 S box (evolves)

fill S box with 0 to 255 and take key K
j=0
for i = 0 to 255 // rearrange Sbox according to key
j = (j + Si + Ki) mod 256
swap Si and Sj

//stream generation
i,j=0
while (true)
i = (i+1) mod 256
j = (j+ Si) mod 256
swap Si and Sj // rearrange Sbox
t = (Si + Sj) mod 256
b = St

XOR plain/cipher text byte with b

CNS Lecture 6 - 51

LFSR keystream
linear feedback shift registers
• efficient in hardware (shift XOR)
• where to tap (connection polynomial)
• full period (2n - 1) if polynomial is

primitive mod 2
• example, x4 + x +1 (1,0,0,1)
• n-bit "key" is initial setting (seed)
• can solve single LFSR, so use several
• shrinking generator -- use output of

first LFSR to select/drop bit of 2nd
LFSR

• GSM's A5 uses XOR of 3 LFSRs
• US cellular ORYX 3 32-bit LFSRs

applet animation

1 0 0 1

x17 + x 15 + 1

CNS Lecture 6 - 52

Combining LFSR’s

Alternating step generator
select R2 or R3 based on R1

Shrinking generator
select R2 only when R1 outputs a 1

CNS Lecture 6 - 53

GSM A5

• 3 LFSR’s with periods (19,22, and 23 Æ64-bit key)
x19 + x5 +x2 + x + 1 x22 + x + 1 x23 + x16 + x2 + x + 1

• Output “clocked” by majority function from taps at 8, 10, and 10
– Clocked means register is shifted with its new feedback input

• Without clocking, period would be (219 – 1)(222 – 1)(223 – 1), but experiments
show really only 4/3 (223 – 1)

• Only 70% of seeds produce different keystreams

CNS Lecture 6 - 54

SNOW

• Version 1 weak, version 2 better
• LFSR (16x32 bits) plus finite

state machine (FSM)
• 32-bit operations /output
• 8x8 bit S box
• 128 or 256 bit key
• 128-bit IV

10

CNS Lecture 6 - 55

LFSR summary

•Fast/simple in hardware

•Subject to correlation attacks with known plaintext

•Need non-linear combinations

•Use “secret” connection polynomial (ci)

Polynomial arithmetic over GF(2n) used in Rijndael, CRC’s, ECC, and LFSR’s

CNS Lecture 6 - 56

Stream ciphers

• Byte or bit based
• Efficient in hardware (LFSR) based on XOR ci = pi ⊕ si

• The ultimate: ONE-TIME PAD, everything else repeats /
• Hash-based PRNG’s are good approximations
• TROUBLE if you re-use the key stream!

– If plaintext/ciphertext pair known, you have the keystream
– If PRNG period too short (WEP/RC4 GSM), key stream will repeat
– If you have multiple plaintext’s encrypted with same keystream (Microsoft

Excel/WORD), you can XOR ciphertexts and with word/character
frequencies derive plaintexts P1i ⊕ P2i

see Dawson/Nielsen

Use a block cipher if you can.

CNS Lecture 6 - 57

Choosing a cipher

• depends on application
• type: stream or block
• block mode: CBC, ECB, OFB, CFB, CTR
• compact (smart card)
• strength (key length, lifetime, test of time)
• license?
• availability/portability
• performance
• error properties (mods/losses) – you need separate integrity check (hash)
• tested, widely used
• Worry about padding and IV
• OpenSSL: DES, 3DES, DESX, blowfish, AES, RC4, Cast
• don't build your own or buy snake oil

Performance (MBs)
MD5 204
RIPEM 53
SHA 73
Panama 302

IDEA 19
Skipjack 20
DES 21
3DES 10
RC5 59
Blowfish 64
Rijndael 62
RC4 113

2.1GHz pentium 4

CNS Lecture 6 - 58

Snake oil

• pseudo-mathematical gobbledygook
– unique in-house developed incremental base shift algorithm
– virtual matrix of binary values which is infinity in size in theory
– utilizes DGNT bulk encryption method

• new mathematics -- chaotic functions, neural nets, zeta functions
• revolutionary breakthrough
• proprietary crypto -- trust us
• extreme cluelessness -- unbreakable
• ridiculous key lengths
• one-time pads
• unsubstantiated claims – “ scientifically acclaimed ... military grade”
• security proofs – “ proved as secure as a one-time pad ”
• exportable
• “not broken by Tom’s cns06 students”

– cracking contests don't guarantee security

CNS Lecture 6 - 59

PAIN

Does symmetric key encryption provide:
• Privacy?
• Authenticity?
• Integrity?
• Non-repudiation?
• Availability?
• Virus protection?

CNS Lecture 6 - 60

Key management

• key generation
• key length
• key lifetime, archiving
• key distribution

PKI (later)
• PKI issues (later)
• key recovery
• protecting keys

11

CNS Lecture 6 - 61

Key generation

choose strong keys
• passwords/phrases

–length
–mixture: upper, lower, special, numerics
–good generator/verifier
–dictionary attacks

• random keys
–unpredictable
–random sources (keystrokes, system info, /dev/random)
–mixing (MD5, X9.17)
–watch out for rand()

CNS Lecture 6 - 62

Key length
Size matters

• depends on value of information and resources of attacker
• depends on lifetime of secrets
• assume algorithm perfect, then brute force
• one more bit of key, doubles attacker's work factor (exponential)

type lifetime key lth bits
tactical military minutes 56-64
product announce days 64
business plan years 64
trade secrets decades 112
nuclear secrets 40 yrs 128
spy IDs 50 yrs 128
personal info 50 yrs 128

• 128-bit key:
using all the computers in the world, and if they could do a million

encryptions/sec, it would take a million times the age of the universe!
(AES key sizes: 128, 192, 256)

CNS Lecture 6 - 63

Brute force key attacks

symmetric key

• time and cost
• software, FPGA, ASIC
• hacker, corporate, government
• 40-bit key: $400 FPGA, 5 hours
• EFF DES cracker $250K, 3 days
• DES key breaking ($1M/4 hr.) within budget of

large corporation or criminal organization
• $300M, DES keys in 12 seconds
• 75-bit, $10M/6 yrs, $300M/70 days
• recommend 75-90 bit keys today , 128

CNS Lecture 6 - 64

Brute force

• equivalent resistance to attack (key length in bits)
Symmetric Public
56 384

64 512

80 768

112 1792
128 2304

ref. Schneier

• public key vulnerable to improvements in factoring algorithms
(or discrete logs)

CNS Lecture 6 - 65

Key lifetime

• lifetime is a function of keylength (work factor for brute force)
• the more a key is used, the greater the loss if compromised
• the longer a key is used, the more likely it will be compromised
• lifetime of info (message, signature, file)
• amount of data encrypted can determine lifetime

–bad guy accumulates ciphertext for cryptanalysis
–for DES, don't send more than 238 bits under the same key

at 1 Gbit/sec, 5 minutes
• key hierarchy (master key, session key)

–Use master key only to encrypt temporary session keys

CNS Lecture 6 - 66

Updating keys

• Kerberos/PEM/PGP/PKI include ticket/key lifetime fields
• password aging
• public keys, typically 2 yrs max
• may need key archive (key id with material), or re-key material
• archive CRL's too (PKI Certificate Revocation List …later)
• risk in distributing new keys

–need (secure) key renewal, key update protocol
–Perfect forward secrecy (don’t use old key to generate/send new key)

12

CNS Lecture 6 - 67

Key distribution

How to get keys (code books, one-time pads) to the end users?

• courier /
–Codebook (enigma) get key of the day

• secret keys -- out of band, splitting
• third party generates key and delivers to A and B
• KDC (Kerberos/DCE) -- must be secure
• key update using old key /or key encrypting key/master key ☺
• ISAKMP/Oakley, SKIP, Photuris (IPsec)

set up key on behalf of application
• Diffie-Hellman (perfect forward secrecy)
• public key cryptography

CNS Lecture 6 - 68

KDC

key distribution center

• N2 keys for N nodes
–one for every pair /

• KDC:
–Just N KDC keys for N users
–KDC generates session key for Bob and Alice, sends

it to them encrypted with their respective KDC key
–KDC must be secure

• protocol for requesting session key
• More on key distribution when we look at Kerberos

CNS Lecture 6 - 69

Key recovery

• good business sense
• key escrow

–Clipper chip – big brother Æ
–clipper III -- and export carrot

• commercial recovery (Entrust)
• secret sharing (m,n) threshold

–split secret into n parts (n > m)
–any m of them can be used to reconstruct secret
–several algorithms (Schneier) (Shamir: m-degree polynomial)

• part of a PKI? -- encrypt message key with CA's key too?

key recovery is when I can find out my key.
Key escrow is when you can find out my key.

CNS Lecture 6 - 70

Key escrow the NSA way

Escrowed Encryption Standard (EES)

• FIPS 185
• permit decrypting bad guys messages
• key would be split in half
• two government agencies would hold halves
• court order would allow gathering two halves
• inducement: US let you use bigger key, if you use EES !
• bad public relations

–rushed announcement, which agencies?
–not pre-released to security community
–not clearly justified
–no provision for review by Congress, public,...

• Clipper chip – an implementation

CNS Lecture 6 - 71

Clipper chip

• Alice and Bob create a session key k (Diffie-Hellman, KEA,…)
• clipper encrypts message M with Skipjack Ek(M)
• LEAF is transmitted with encrypted message

Law Enforcement Agent's Field (128 bits)

Ef(Eu(k),id,ac)

– f secret family key (chips know, Key Escrow Decrypt Processor knows)
– id is chip id (32b)
– ac authentication code (16b)(used by receiving chip to verify authentic LEAF)

receiver won’t “decrypt” if LEAF is “bad”
– u chip-specific key

u = k1 ⊕ k2 is split between two agencies Æ given K1 and k2, construct u

• MYK-80 1MB/sec (includes hardware random generator)
• Example, telephone encryptor, link encryptor, FORTEZZA card
• e.g, wiretap captures encrypted message and LEAF, court order gets you k1 and k2

CNS Lecture 6 - 72

skipjack

• NSA encryption for Clipper chip (FORTEZZA)
• algorithm secret (til '98), hardware tamper-resistant
• reviewed by panel of experts
• strength not dependent on secrecy of algorithm
• design started in '85
• evaluation completed in '90
• specs

iterative block cipher
64-bit block
80 bit key
32 rounds, XOR
4x16 bit shift register/counter with 4-round Feistel using 8x8

S box

13

CNS Lecture 6 - 73

Protecting keys

• don't PostIt
• one-time passwords or encrypted channel (ssh)
• encrypt private key
• key renewal
• worry about trojan horses, keyboard sniffers
• strong protection of KDC and CA's
• strong protection of backups
• tamperproof hardware

–token/Fortezza card
– CA Certificate Signing Unit (CSU)

CNS Lecture 6 - 74

Where to encrypt?

link layer
• encrypting modem, net board (wireless)
• transparent,fast
• suitable for private net
• protects only one link (pt-to-pt)
• info may be exposed in OS
network/transport layer
• swIPe, IPv6(IPsec)
• transparent
• selectable (policy)
• appl./host/net keying
• works over public net
• virtual private network (VPN)
• system layer: encrypting file systems (EFS/CFS)
application layer
• end-to-end over public net
• custom applications (PGP, ssh, ssl)
• intrusive, but flexible
• API for application development
• key for every logical circuit

CNS Lecture 6 - 75

Traffic analysis

encrypted traffic threats

• covert channels
• who's talking to whom
• frequency, event correlation
• quantity, length, patterns of messages
• countermeasures

–padding messages
–continuous/random traffic

CNS Lecture 6 - 76

review

Attacks & Defenses
• Risk assessment9
• Viruses9
• Unix security9
• authentication9
• Network security

Firewalls,vpn,IPsec,IDS

Cryptography

•Random numbers9

•Hash functions9

MD5, SHA,RIPEMD

•Classical + stego9

•Number theory

•Symmetric key9

DES, Rijndael, RC5

•Public key

RSA, DSA, D-H,ECC

Applied crypto

•SSH

•PGP

•S/Mime

•SSL

•Kerberos

•IPsec

CNS Lecture 6 - 77

Review

• Lectures

http://www.cs.utk.edu/~dunigan/cns06/midrvw.txt

Lectures

1. Risk, viruses

2. UNIX vulnerabilities

3. Authentication & hashing

4. Random #s classical crypto

5. Block ciphers DES, RC5

6. AES, stream ciphers RC4, LFSR

7. MIDTERM /

8. Public key crypto RSA, D-H

9. ECC, PKCS, ssh/pgp

10. PKI, SSL

11. Network vulnerabilities

12. Network defenses, IDS, firewalls

13. IPsec, VPN, Kerberos, secure OS

14. Secure coding, crypto APIs

15. review

CNS Lecture 6 - 78

Next time …

Mid-term

part 1: take-home (analysis of MISTY1 cipher), work on your own

see midterm (class7.html)

part 2: in class (open book/notes/…) next Tuesday, you’ll need your textbook

