
THE S/KEYTM ONE-TIME PASSWORD SYSTEM

Neil M. Haller

Bellcore
Morristown, New Jersey

ABSTRACT

Computing systems have been under increasingly
sophisticated attack over the Internet and by using
dial-up access ports. One form of attack is
eavesdropping on network connections to obtain login
id’s and passwords of legitimate users. This
information is used at a later time to attack the system.
We have developed a prototype software system, the
S/KEYTM one-time password system, to counter this
type of attack and have been using it experimentally
for external access to a research computer complex at
Bellcore.

The S/KEY system has several advantages compared
with other one-time or multi-use authentication
systems. The user’s secret password never crosses the
network during login or when executing other
commands requiring authentication such as the UNIX
passwd (change password) or su (change privilege)
commands. No secret information is stored anywhere,
including on the host being protected, and the
underlying algorithm may be made public. The remote
end (client) of this system can run on any locally
available computer and the host end (server) can be
integrated into any application requiring
authentication.

The S/KEY authentication system has been in
experimental use at Bellcore for two years. It is
available by anonymous ftp on the Internet.

INTRODUCTION

There are a variety of threats to be considered when
operating a computer system. One can distinguish
between inside jobs and external attacks; in this paper,
we are concerned with attempts to penetrate a system
of computers from outside the physical facility. We
are not concerned with the additional security issues
where legitimate users may attempt to increase their
privilege (become super-users) or where insiders with

�����������������������������������

S/KEY is a trademark of Bellcore

physical access to the computers attempt to gain
improper access.

We have built an experimental prototype S/KEY
authentication system for a UNIX environment, but
there is nothing UNIX-specific about the design.

External Threats

There are several ways an external intruder might
break into a UNIX system. These include guessing
poorly chosen passwords, potentially with dictionary
attacks; taking advantage of bugs in privileged UNIX
system software (an example is the "Morris Worm" of
November 1988 that exploited a bug in the Internet
finger server[1].), and taking advantage of system
configuration errors or poorly chosen system defaults.
Properly configured and administered systems are not
generally vulnerable to these attacks.

Other attacks take advantage of the information that
crosses communications networks. One can obtain
passwords for later use by passive eavesdropping, and
the form of current passwords can be used to guess
future ones. A potential intruder can actively
interfere with legitimate network traffic by spoofing or
disrupting the communications protocols.

Defenses Against Passive and Active Attacks

Data, including authentication information such as
passwords, are carried on a variety of networks
including LANS and private or public data and voice
networks. If a potential intruder can gain access,
either directly or using tools designed for other
functions (such as network management), this access
can be used to monitor traffic from legitimate users
and collect passwords and other data for later use.
This eavesdropping is classified as a passive network
attack. Alternatively, an attacker might choose to
disrupt or divert the communications of legitimate
users, e.g., by spoofing traffic; this is classified as an
active attack.

�����������������������������������

UNIX is a registered trademark of X/Open.

- 2 -

In recent years, protocols capable of thwarting both
passive and active attacks have been devised and
implemented. Many of these, including ours, involve
an exchange of data between the host being protected
and the client attempting to gain authorized access.
The defense against passive attacks is to make the data
crossing the network useless to an eavesdropper; thus
a potential intruder cannot gain improper access by
replaying a saved valid authentication sequence.

The simplest form of such a defense is for the host to
generate a random string and send it to the client. The
client then uses some computing device to compute a
key-based cryptographic function (see below, Secure
Hash Functions) of this string and then return the
output of this function to the host. The host executes
the same function and compares the results.[2] A
weakness of this system is that the secret keys must be
available to the host, and protecting this host becomes
a critical link in the security chain.

This system can be implemented in software or as a
special purpose device to be carried by the client.
The latter offers the advantages of portability and
interface independence, but at an increased system
cost.

Another defense is the use of hand-held device
containing a clock that is synchronized to the host (or
security processor). Both generate a sequence based
on a secret seed that is stored in the host and is
therefore a weak link.

The S/KEY system as described here is implemented in
software. It is straightforward to convert this system
to utilize a portable device, but we have not done so.

A notable example of a security protocol is the
Kerberos1 [3] authentication system from MIT’s
project Athena.[4] Kerberos solves the problem of
passive eavesdropping within a single computing
environment called a realm (multiple realms may be
joined). This system does not, however, address the
problem of access across a network using client
software that is unable to fully participate in the
Kerberos protocol. A client using a workstation
within a realm (or connected realms) is completely
and transparently protected by Kerberos against
passive attacks, but a client using a simple (non-
programmable) terminal or a non-participating2

�����������������������������������

1. Athena and Kerberos are trademarks of MIT.

2. Most communication programs on non-UNIX systems (both
using dial-up and Internet connectivity) are unable to participate
in the Kerberos protocol. This is not to say that they could not
be modified to do so.

computer is vulnerable to an eavesdropping/replay
attack.

A major strength of Kerberos is that it is capable of
protecting against active attacks using encryption.
This option gets limited use because of the overhead it
imposes, but the increasing power of low cost
computers makes this a short term problem. Given
that it is much easier to conduct a passive attack than
an active one without risking detection, we feel that
there is still value in a system that protects only
against passive attacks.

The S/KEY Authentication System

The S/KEY authentication system is a scheme that
protects user passwords against passive attacks. It can
be easily and quickly added to almost any UNIX
system, without requiring any additional hardware and
without requiring the system to store information
(such as plain text passwords) that would be more
sensitive than the encrypted passwords already stored.
The S/KEY system can be used with "dumb terminals",
personal computers with conventional
communications programs, or workstations. It is
conceptually compatible with a potential
implementation based on smart cards or pocket
calculators.

GOALS

Eavesdropping Protection

The primary goal of the S/KEY authentication system
is to provide complete protection of the login-time
authentication mechanism against passive
eavesdropping. This protection implies that no
information may cross the network that could
potentially be used for authentication at a later time.
An eavesdropper with complete transcripts of many
user sessions, including password changes, should
have no information that would be useful in
attempting to login to the system.

Ease of Use

A security system must be easy to use. Not all users
are willing to cope with a complex security system
and it is virtually impossible to block all insider built
back-doors. The more user-friendly the system is, the
less likely it will be bypassed. Ideally the system
should be as easy to use as a system protected by a
conventional multi-use password system.

Automated Operation

A common form of remote access to a computing
system is from another computer acting as a terminal
using a communications program. This computer may

- 3 -

be completely under the control of a single operator,
and thus may be trusted. We want our system to be
nearly as simple to use in this configuration as remote
login using a multi-use password.

In some situations, it is useful to have one machine
access another without human intervention. Assuming
a remote client machine is in a secure environment so
that it can be trusted with the underlying secret
password, full automatic operation can be achieved.

The goal of providing automated operation implies
that our system is primarily a secret based
authentication system (something you know). As it
requires computation to produce the one-time
passwords, it is easily convertible to a token based
(something you have) system.

No Secret Algorithms

The security of the authentication system must be
based entirely on the secret (or secret containing
token) and not on secret algorithms. A public
algorithm can be evaluated by the industry, thus
developing confidence in its cryptographic strength. If
a system’s security depends on a hidden algorithm,
there is always a danger of exposure when someone
who knows the secret changes jobs or loyalties.

No Stored Secrets

Storing secret keys or passwords on a host increases
its attractiveness as a target, and causes a breach of
security to be more wide-spread. When a common
password file is used for many machines, this risk
becomes even greater. On UNIX systems, the
password file contains passwords already processed
through a secure hash function and thus the
information in this file is not directly usable to an
intruder. We want our system to be no weaker3 than
this UNIX scheme, implying that no usable passwords
may be stored on any host.

DESCRIPTION OF THE S/KEY SYSTEM

There are two sides to the operation of our one-time
password system. On the remote client side, the
appropriate one-time password must be generated. On
the host side, the server must verify the one-time
password. This section describes both sides, and the
secure hash function on which the S/KEY
authentication system is based.

�����������������������������������

3. Both UNIX password security and S/KEY authentication are
vulnerable to dictionary attacks unless the passwords are well
chosen.

Secure Hash Functions

A secure hash function is a function that is easy to
compute in the forward direction, but computationally
infeasible to invert. Consider:

y = f (x)

If f is the secure hash function with input x and output
y, then computing y given x is fast and easy, but
finding an x ′ such that

y = f (x ′)

for a given y is extremely difficult. Ideally, there
should be no way to determine such an x ′ other than
by trying an infeasible number of values to see which
one works. If the number of possible values of x that
must be tried is made large enough, then for all
practical purposes the function cannot be inverted.
We have chosen a hash function with 264 (about 1019)
values.

As the basis of our secure hash function, we chose the
MD4 Message Digest algorithm4 designed by Ronald
Rivest[5] of RSA Data Security Inc. MD4 accepts an
arbitrary number of bits as input and produces 16
bytes of output. MD4 is fast, and so far it is believed
to be secure; i.e., there is no known way of finding the
input that produced a given output that is better than
by exhaustively trying possible inputs.

In order to be able to apply the hash function an
arbitrary number of times, we have defined our
function to take 8 bytes of input and to produce 8
bytes of output. This is done by running the 8 bytes of
input through MD4 and then "folding" pairs of bytes
in the 16-byte MD4 output down to 8 bytes with
exclusive-OR operations.

Generation of One-Time Passwords

Our one-time passwords are 64 bits in length. We
believe that this is long enough to be secure and short
enough to be manually entered by users (see below,
Form of Password, for the representation) when
necessary.

Preparatory Step

The input to our hash function (described above) is 8
bytes. As the client’s secret password may be (should

�����������������������������������

4. Although the security of MD4 has not been broken, the newer
function MD5 has been released. MD5 is slightly slower and
more complex; converting to MD5 is simple, but we have
chosen to continue using MD4 because of the large number of
client password computing programs that have been distributed.

- 4 -

be) longer, a preparatory step is needed. In this step,
the password is concatenated with a seed that is
transmitted from the server in clear text. This non-
secret seed allows a client to use the same secret
password on multiple machines (using different
seeds), and to safely recycle secret passwords by
changing the seed. The result of the concatenation is
passed through MD4, and then reduced to 8 bytes by
exclusive-OR of the two 8-byte halves. This result,
called s below, is passed on to the generation step.

Generation Step

The sequence of one-time passwords p i is produced
by applying the secure hash function multiple times.
That is, the first one-way password is produced by
running the client’s processed secret password s
through the hash function some specified number of
times, N.

p 0 = f N (s)

The next one-way password is generated by running
the user’s password through the hash function only
N − 1 times.

p 1 = f N − 1 (s)

In general, the formula is:

p i = f N − i (s)

An eavesdropper who has monitored the use of the
one-time password p i will not be able to generate the
next one in the sequence (p i + 1) because doing so
would require inverting the hash function. Without
knowing the secret key that was the starting point of
the function iterations, this can not be done.

System Verification of Passwords

The host is initially given p 0. When a client attempts
to be authenticated, the seed and current value of i are
passed to the client. The client returns the next one-
time password. The host computer first saves a copy
of this one-time password, then it applies the hash
function to it.

p i = f (f N − i − 1 (s)) = f (p i + 1)

If the result does not match the copy stored in the
system’s password file, then the request fails. If they
match, then the client’s entry in the system password
file is updated with the copy of the one-time password
that was saved before the final execution (by the
server) of the hash function. This updating advances
the password sequence.

Because the number of hash function iterations
executed by the user decreases by one each time, at
some point the user must reinitialize the system or be

unable to log in again. This is done by executing the
keyinit command, that is essentially a special version
of the the UNIX passwd command, to start a new
sequence of one-time passwords. This operation is
identical to a normal authentication, except that the
one-time password received over the network is not
checked against the entry already in the password file
before it replaces it. In this way, the selection of a new
password can be done safely even in the presence of
an eavesdropper. This mechanism does not defend
against an active attack.

OPERATION OF S/KEY SYSTEM

Overview

The S/KEY one-time password authentication system
uses computation to generate a finite sequence of
single-use passwords from a single secret. The
security is entirely based on a single secret that is
known only to the user5. The single-use passwords
are related in a way that makes it computationally
intractable to compute any password from the
preceding sequence. (It is simple, however, to
compute previous passwords from the current one.)

The single use, or one-time, passwords replace all
authentication password requirements. They are used
at login time and when using the UNIX su command.
Even when the underlying secret password is changed,
only a derived one-time password crosses the network.
The host computer never sees, and has no way of
learning, the real secret.

As no secret algorithms are used, and the code is
freely available, it is straightforward to build the
S/KEY one-time password security system into any
command or product requiring authentication.

Generation of S/KEY One-Time Passwords

As mentioned above, the one-time password sequence
is derived from the secret password using a computer.
The required computation can be executed on any PC
or UNIX class machine. A supplier of credit card size
devices estimated that such a device could be built for
less than $30 in large quantities.

The program can also be stored on and executed from
a standard floppy disk. This would allow operation on
a remote computer that could not be entirely trusted
not to contain a Trojan Horse that would attempt to
capture the secret password6. It is also possible to

�����������������������������������

5. Alternatively, part of or the entire secret can be stored in a non-
retrievable way, in the computing device.

6. For added security, one might prefer to boot off the floppy. The
truly paranoid will worry about the integrity of the ROM.

- 5 -

pre-compute and print several one-time passwords that
could be carried on a trip where no trusted local
computation is available such as when using public
workstations at a conference.

Description of Operation

The following narrative describes the procedure for
logging into a UNIX system using the S/KEY one-time
password system. In this example, a hand-held PC
compatible computer is assumed. Note that the
sequence numbers of successive one-time passwords
decreases.

1. The user, call her Sue, identifies herself to the
system by login name.

2. The system issues a challenge including the
sequence number of the one-time password
expected and a "seed". This "seed" allows Sue
to securely use a single secret for several
machines. In this example, the seed is "unix3"
and the sequence number is 54.

3. Sue enters 54 and unix3 into her palm-top
computer. She is prompted for her secret.

4. Sue enters her secret password that may be of
any length. The palm-top computes the 54th
one-time password and displays it.

5. Sue enters the one-time password and is
authenticated.

6. Next time Sue wants access, she will be
prompted for one-time password sequence
number 53.

Semi-Automated Operation

We have built semi-automatic interfaces for clients
using communications software on a MS-DOS7 or
Apple Macintosh8 personal computer. The following
example describes a client interface that runs under
DOS as a Terminate and Stay Resident (TSR) program.

Consider Sue in the above example using a
communications program on a MS-DOS machine.
Before starting the communications program, Sue runs
a program that ties itself to a hot-key such as function
key F10. When the host issues its challenge, Sue
presses the hot-key. The program then scans the
screen for the challenge and extracts the sequence
number and seed. It then prompts Sue for her secret

�����������������������������������

7. MS-DOS is a registered trademark of Microsoft Corporation.

8. Macintosh is a trademark of Apple Corporation.

password and generates the correct one-time password
and stuffs it into the keyboard buffer simulating user
entry of this password.

Fully automated operation is obviously possible, but it
would require the client machine to know the secret
password. This is only acceptable if the client
machine is in a physically secure place.

Form of Password

Internally the one-time password is a 64 bit number
providing 264 possible unique one-time passwords.
Entering a 64 bit number is not a pleasant task; the
one-time password is therefore converted to a
sequence of six short words (1 to 4 letters). Each
word is chosen from a dictionary of 2048 English
words thus providing a space of 266 possible
sequences. The contents and encoding of this
dictionary are not kept secret.

ADMINISTRATION OF SYSTEM

Installation

The minimum that must be installed to use this one-
time password system on a UNIX host is a replacement
for the login command and an additional command
similar to passwd. As with the original commands,
these must run as root. In addition, it may be useful to
install a one-time password version of the su
command, a new version of ftpd for allowing ftp
access via one-time passwords, and a command to
compute one-time passwords.

Source Screening

It is frequently desirable for an installation to allow
internal access with a multi-use password while
requiring one-time passwords for external access. A
screening table provides this function. When this
table is present, login attempts that pass the screening
test are permitted to use the normal password or a
one-time password. Others are notified that the use of
the one-time password is required.

Password echo

Normally systems disable printing during the typing of
a password so that an onlooker cannot steal the
password. With a one-time password, this is
unnecessary. The S/KEY modification of the login
command allows the user to turn echo on by pressing
"return" at the password prompt. This makes it easier
to enter the longer one-time password.

EXPERIENCE

The S/KEY authentication system has been in
experimental use for off-premise access to Bellcore

- 6 -

for about two years. It has been available as an
alternative one-time password system to the users of
computer resources of one research organization.
This section is based on this experience as
unscientificly observed by the biased eyes of the
author.

Ease of Use

User reaction to the S/KEY system varied from delight
to indifference. Our goal (see above, GOALS) of ease
of use was not fully met because the reaction of
potential users was mixed based on two factors.

Type of Terminal

Those who accessed our systems using terminal
programs on personal computers were generally happy
(some were enthusiastic). These people generally
used one of the semi-automated client access
programs. Those whose access was from non-
programmable terminals (such as X-Terminals) were
less satisfied. They generally had to print lists of one-
time passwords and enter them as required. No one
liked typing the six-word one-time passwords
although some preferred it to alternative systems.

Ease of Learning

Once you know how this system works, it is very easy
to use. And once you understand the underlying
concept, it is easy to understand how it works. But
users are generally not interested in that level of
understanding. Several users stated that the system
was easier to use than other systems, but took longer
to learn. Several potential users never bothered to
learn and chose the token authenticator in general use
at Bellcore. We learned that documentation is
important, and that good user instructions are hard to
write.

Ease of Installation

Installing the S/KEY system requires replacing the
login program. While the changes were
straightforward, modifying the existing login is
impossible for systems without access to source code.
In our case, we replaced the SunOS login with a
modified program from BSD UNIX.

AVAILABILITY

The server code for UNIX and the client interfaces are
available as-is over the Internet by anonymous ftp.
Some documentation in the form of man pages is also
available. These files are available from
thumper.bellcore.com in subdirectories of pub/nmh.
The contents of these subdirectories are:

skey UNIX files including source, makefile, and

man pages
dos DOS client interfaces and documentation in

UNIX man-page format
mac Macintosh client interface package

SUMMARY

Computing systems have been under increasingly
sophisticated attack using dial-up and other external
access ports. The one-time password technology
described is a simple and effective way to keep plain
text passwords out of the hands of an eavesdropper. It
is more general than some other systems as it allows
protected access to super-user privilege, and allows its
underlying secret password to be securely changed.
No authenticating secret is ever transmitted in a re-
usable form.

The S/KEY one-time password system described has
been in use for about two years. We have learned that
ease of use and ease of learning are critical to user
acceptance. S/KEY is easy to use from workstations
and personal computers, but more difficult from non-
programmable terminals. In the later case, a self
contained token authentication system seemed
preferable to some users.

One-time passwords protect only at the time of
authentication. They do not protect against an
eavesdropper learning the content of the monitored
session. They also do not protect against false
authentication using more sophisticated active attacks.
For example, a legitimate user might log into a system
only to have the network connection "stolen" by an
intruder. This could happen immediately after login,
or the intruder could wait until the legitimate user
attempts to log out (to reduce the chances of
detection). Attempts to defeat active attacks may
require more computing power on the user end of the
connection than is frequently available, certainly more
than is available on a "dumb" terminal. Techniques
under study include the encryption or protecting with
cryptographic checksums of some or all of every
packet of data exchanged.

ACKNOWLEDGMENTS

The idea behind our system was originally described
by Leslie Lamport.[6] The specific system described
was proposed by Phil Karn who wrote most of the
UNIX software. Additional details of the design were
contributed by the author and John S. Walden who
wrote the initial version of the MS-DOSclient software.
The Macintosh one-time password generator was
written by Mark Segal, and the current MS-DOS client
interfaces were written by the author.

- 7 -

REFERENCES

1. Eugene H. Spafford, The Internet worm program:
An analysis. Computer Communications Review
19(1):17-57, January 1989.

2. R. M. Wong, T. A. Berson, R. J. Feiertag,
"Polonius: An Identity Authentication System",
Proceedings of the 1985 Symposium on Security
and Privacy, pp. 101-107, Oakland, California,
April 1985.

3. J. G. Steiner, C. Neuman, and J. I. Schiller.
Kerberos: An authentication service for open
network systems. USENIX Conference
Proceedings, pp. 191-202, Dallas, Texas,
February 1988.

4. Champine, G., Geer, D., and Ruh, W. "Project
Athena as a Distributed Computer System", IEEE
Computer, September 1990.

5. R. L. Rivest, The MD4 Message-Digest
Algorithm, Request For Comments (RFC) 1320,
MIT and RSA Data Security, Inc., April 1992.

6. Leslie Lamport, "Password Authentication with
Insecure Communication", Communications of
the ACM 24.11 (November 1981), 770-772.

- 8 -

