
Fast Hashing and Stream Encryption with
Panama

Joan Daemen1 Craig Clapp2

1 Banksys, Haachtesteenweg 1442, B-1130 Brussel, Belgium
email: Daemen.J@banksys.be

2 PictureTel Corporation, 100 Minuteman Rd., Andover, MA01810, USA
email: craigc@pictel.com

Abstract. We present a cryptographic module that can be used both as
a cryptographic hash function and as a stream cipher. High performance
is achieved through a combination of low work-factor and a high degree
of parallelism. Throughputs of 5.1 bits/cycle for the hashing mode and
4.7 bits/cycle for the stream cipher mode are demonstrated on a com-
mercially available VLIW micro-processor.

1 Introduction

Panama is a cryptographic module that can be used both as a cryptographic
hash function and a stream cipher. It is designed to be very e�cient in software
implementations on 32-bit architectures.

Its basic operations are on 32-bit words. The hashing state is updated by a
parallel nonlinear transformation, the bu�er operates as a linear feedback shift
register, similar to that applied in the compression function of SHA [6]. Panama
is largely based on the StepRightUp stream/hash module that was described
in [4].

Panama has a low per-byte work factor while still claiming very high security.
The price paid for this is a relatively high �xed computational overhead for every
execution of the hash function. This makes the Panama hash function less suited
for the hashing of messages shorter than the equivalent of a typewritten page. For
the stream cipher it results in a relatively long initialization procedure. Hence,
in applications where speed is critical, too frequent resynchronization should be
avoided.

A typical application for Panama might be the encryption or decryption of
video-rate data in conditional access applications (e.g. pay-TV). Set-top boxes
and future digital televisions will increasingly include media processors for de-
coding compressed video and for performing other computationally intensive
image processing tasks. This is an application space where data rates are high,
high-performance processors are increasingly likely to be present, and decryption
must be done yet must not unduly burden an already heavily loaded processor.

After specifying the Panama hash function and stream cipher, we discuss the
particular design strategy and the implementation aspects. We don't attempt to
give a proof of security. However, a motivation for the design choices is given.

A C reference implementation of Panama and PostScript and PDF versions
of [4] are availablefromhttp://www.esat.kuleuven.ac.be/~rijmen/daemen.

2 Basic design principles

Panama is based on a �nite state machine with a 544-bit state and a 8192-
bit bu�er. The state and bu�er can be updated by performing an iteration.
There are two modes for the iteration function. A Push mode, that allows to
inject an input and generates no output, and a Pull mode that takes no input
and generates an output. A blank Pull iteration is a Pull iteration in which the
output is discarded.

The updating transformation of the state has high di�usion and distributed
nonlinearity. Its design is aimed at providing very high nonlinearity and fast dif-
fusion for multiple iterations. This is realised by the combination of four distinct
transformations each with its speci�c contribution. There is one for nonlinearity,
one for bit dispersion, one for inter-bit di�usion, and one for injection of bu�er
and input bits.

The bu�er behaves as a linear feedback shift register that ensures that input
bits are injected into the state over a wide interval of iterations. In the Push
mode the input to the shift register is formed by the external input, in the Pull
mode, by part of the state.

The Panama hash function is de�ned as performing Push iterations with
message blocks as input. If all message blocks have been injected, a number of
blank Pull iterations are performed to allow the last message blocks be di�used
into the bu�er and state. This is followed by a �nal Pull iteration to retrieve the
hash result.

The Panama stream encryption scheme is initialised by doing two Push
iterations to inject the key and diversi�cation parameter followed by a number of
blank Pull iterations to allow the key and parameter to be di�used into the bu�er
and state. After this initialisation, the scheme is ready to generate keystream
bits at leisure by performing Pull iterations.

3 Speci�cation

The state is denoted by a and consists of 17 (32-bit) words a0 to a16. The bu�er
b is a linear feedback shift register with 32 stages, each consisting of 8 words. An
8-word stage is denoted by bj and its words by bji . Both stages and words are
indexed starting from 0.

The three possible modes for the Panama module are Reset, Push and Pull.
In Reset mode the state and bu�er are set to 0. In Push mode an 8-word input
is applied and there is no output. In Pull mode there is no input and an 8-word
output is delivered.

The bu�er update operation is denoted by �. We have (with d = �(b)):

dj = bj�1 if j 62 f0; 25g;
d0 = b31 � q ;
d25i = b24i � b31i+2mod8 for 0 � i < 8 :

(1)

In Push mode q is the input block p, in Pull mode it is part of the state a,
with its 8 component words given by

qi = ai+1 for 0 � i < 8 : (2)

The state updating transformation is denoted by �. It is composed of a num-
ber of speci�c transformations:

� = � � � � � � : (3)

Here � denotes the (associative) composition of transformations where the right-
most transformation is executed �rst.

� is an invertible linear transformation de�ned by:

c = �(a) , ci = ai � ai+1 � ai+4 for 0 � i < 17 ; (4)

with the indices taken modulo 17. The invertibility of � follows from the fact
that 1� x� x4 is coprime to 1� x17.

 is an invertible nonlinear transformation de�ned by:

c = (a), ci = ai � (ai+1 OR ai+2) for 0 � i < 17 ; (5)

with the indices taken modulo 17. A proof for the invertibility of can be found
in [4].

The permutation � combines cyclic word shifts and a permutation of the
word positions. If we de�ne �k to be a rotation over k positions from LSB to
MSB, we have:

c = �(a), ci = �k(aj) ; (6)

with
j = 7i mod17 and
k = i(i + 1)=2 mod32 :

(7)

The transformation � corresponds with bitwise addition of bu�er and input
words. It is given by (let c = �(a)):

c0 = a0 � 00000001hex ;
ci+1 = ai+1 � `i for 0 � i < 8 ;
ci+9 = ai+9 � b16i for 0 � i < 8 :

(8)

In the Push mode ` corresponds with the input p, in the Pull mode ` = b4.

In the Pull mode the output z consists of 8 words given by

zi = ai+9 for 0 � i < 8 : (9)

The transformation � is illustrated in Fig. 1, the Push and Pull modes of the
Panama module are illustrated in Fig. 2.

π

θ

σ

γ

Fig. 1. The state updating transformation �.

p

ρ

a

310

ρ

a z

0 31

Fig. 2. Push (above) and Pull (below) modes of Panama.

3.1 The Panama hash function

The Panama hash function maps a message of arbitrary length M to a hash
result of 256 bits. The Panama hash function is executed in two phases:

{ Padding M is converted into a string M 0 with a length that is a multiple
of 256 by appending a single 1 followed by a number d of 0-bits with 0 �
d < 256.

{ Iteration The input sequence M 0 = p1p2 : : : pV is loaded into the Panama
module according to Table 1.

After all input blocks have been loaded, an additional 32 blank Pull iterations
are performed. Then the Hash result h is returned. The number of Push and Pull
iterations to hash an V -block input sequence is V + 33.

Time step t Mode Input Output

0 reset { {
1; : : : ; V Push pt {
V + 1; : : : ; V + 32 Pull { {
V + 33 Pull { h

Table 1. The sequence diagram of the iteration phase of the Panama hash function.

The design goal for the Panama hash function is that it should be hermetic.
For the de�nition of this term we refer to [4]. In short, for a hermetic hash
function, the following statements are true.

Assume we take as hash result the value of a subset of n bits of the (for
Panama 256-bit) output:

{ the expected workload of generating a collision is of the order of 2n=2 execu-
tions of the hash function,

{ given an n-bit value, the expected workload of �nding a message that hashes
to that value is of the order of 2n executions of the hash function,

{ given a message and its n-bit hash result, the expected workload of �nding a
second message that hashes to the same value is of the order of 2n executions
of the hash function.

Moreover, it is infeasible to detect systematic correlations between any linear
combination of input bits and any linear combination of bits of the hash result.

A hermetic hash function can be turned into a secure MAC by simply includ-
ing a secret key in the message input. Its security is independent of the positions
of the secret key bits in the message. It may be appended, pre-pended, inserted
somewhere in the middle of the message or even be distributed over bits spread
all over the message. Observe that this is not the case with hash functions of the
MD4 family [8].

3.2 The Panama stream encryption scheme

The stream cipher is initialized by �rst loading the 256-bit key K, the 256-bit
diversi�cation parameter Q and performing 32 additional blank Pull iterations.
During keystream generation an 8-word block z is delivered at the output for
every iteration. In practice, the diversi�cation parameter allows for frequent
resynchronisation without the need to change the key.

The sequence diagram of the Panama stream encryption scheme is given in
Table 2.

Time step t Mode Input Output

�34 reset { {
�33 Push K {
�32 Push Q {
�31; : : : ; 0 Pull { {
1; : : : Pull { zt

Table 2. The sequence diagram of the Panama stream encryption scheme.

The design goal for the Panama stream encryption scheme is that it should
be hermetic and K-secure (also de�ned in [4]). K-security implies among other
things that, given part of the keystream outputs corresponding with a given key
and for chosen values of Q, the most e�cient way to gain knowledge on the key
or on the complementary part of the keystream output, is exhaustive key search.

4 Discussion

4.1 The state updating transformation

 is the simplest nonlinear shift-invariant transformation. Its propagation prop-
erties are described in detail in [4]. In short:

{ The maximum correlation between its input and output diminishes expo-
nentially with the Hamming Weight of the output selection vectors.

{ The di�erence propagation probability diminishes exponentially with the
Hamming Weight of the input di�erence vectors.

The transformation � corresponds with the multiplication by a binary polynomial
modulo 1 � x17. It was selected from the invertible polynomials with Hamming
weight 3 on the basis of its good di�usion properties. A single input di�erence
gives rise to three output di�erences. For the vast majority of input di�erence
vectors with a small (below 32) Hamming Weight, the Hamming Weight of the
corresponding output vector is about three times higher.

The cyclic shift coe�cients of �, described by the simple expression in (7),
form an array of 17 di�erent constants. The word permutation factor 7 is chosen
to let every component of � depend on 9 state bits. For the chosen � parameters
it has been veri�ed that � � � has propagation and correlation properties that
are close to optimal with respect to the space of possible � parameters. On the
average, a di�erence in a single bit di�uses to 6 bits after one iteration, 36 bits
after two, 216 after three and all over the state after 4 iterations. Since , �, �
and � are all invertible, the state updating transformation � is invertible.

� includes the addition of a constant to a0 to prevent symmetric properties.
For the value of the constant 00000001hex was chosen for its simplicity.

4.2 The hash function

The design of the Panama hash function di�ers from the currently popular
MD4-derived designs such as MD5 [10], SHA-1 [7] and RIPEMD-160 [5] in three
important ways:

{ Parallel iteration transformation: the MD4-derived designs have an it-
eration function that consists in itself of a sequence of a large number of
(simple) rounds, in Panama the iteration function consists of a single (more
complicated) round with a parallel structure.

{ Large Chaining State: the MD4-derived hash functions have a chaining
variable that has the same size (16 or 20 bytes) as the hash result by design,
the chaining variable of the Panama hash function comprising the internal
state and bu�er is over 1 Kbyte.

{ Presence of �nal transformation: In the MD4-derived designs, the hash
result is the �nal value of the chaining variable. For Panama the 32 blank
Pull iterations form a �nal transformation mapping the �nal value of the
chaining variable (state and bu�er) to the hash result.

These di�erences are the consequence of a di�erence in design strategy. In
the MD4-derived hash functions the iteration transformation is designed to be
collision-resistant in itself. The iteration mechanism and the fact that the hash
result is the value of the chaining variable after the last message block has
been hashed, assure that the resulting hash function is collision-resistant. In
the Panama hash function, it is the di�usion and nonlinearity realised by the
successive application of the iteration function that is expected to prevent cryp-
tographic weaknesses.

4.3 Collision resistance

In this section we explain the di�culties faced when trying to generate collisions
for Panama.

The hash result is completely determined by the �nal value of the chaining
variable: the state aV+1 and bu�er contents bV+1. The converse is however not
true, and pairs of messages may be found with di�erent values for the �nal

chaining variable both consistent with the same hash result. In this case, the
collision actually results from the fact that the hash result is not equal to the
�nal hashing state. We call this a terminal collision. Collisions in which two
di�erent messages give rise to equal chaining variable at a certain point are
called internal . In hash functions without a �nal transformation, such as MD4
and its descendents, terminal collisions cannot occur.

Generating an internal collision implies two di�erent messages that give rise
to a bitwise di�erence pattern in the hashing state and bu�er that dissolves, i.e.,
that ends up being all-zero for some iteration. Realising this, while theoretically
possible, is assumed to be infeasible because of the large di�usion and distributed
nonlinearity of � combined with the fact that every message block a�ects the
hashing state for a large number of iterations. Di�erence patterns in the bu�er
induce a so-called di�erential characteristic or equivalently di�erential trail [4]
in the hashing state.

A possible strategy for �nding internal collisions would be to look for an
input di�erence pattern that can give rise to a di�erential trail that ends in a
zero di�erence somewhere in the computation. Other strategies are

{ �nding �xed points of the Push mode or more general, �xed sequences of
the Push mode,

{ meet-in-the-middle attacks exploiting the invertibility of the iteration func-
tion.

These attacks have been considered in the design strategy and in the choice of
the state and bu�er updating transformations.

Because of the linear feedback in the bu�er, a di�erence pattern in a single
message block gives rise to an in�nite di�erence propagation in the bu�er. This
is illustrated in the right-hand side of Fig. 3. Only di�erence patterns in the
input sequence that meet a particular condition give rise to a �nite di�erence
propagation in the bu�er.

The simplest di�erence pattern that gives rise to a �nite di�erence propaga-
tion in the bu�er is illustrated in the left-hand side of Fig. 3. All other message
di�erences that give rise to a �nite di�erence propagation in the bu�er are su-
perpositions (linear combinations) of shifted (in time and space) instances of
this di�erence pattern.

Even the simplest di�erence pattern a�ects the state a during 5 di�erent
iterations, spread over a range of 32 iterations. Fig. 4 illustrates the di�erence
propagation in � resulting from a similar di�erence pattern in p that gives rise
to a �nite di�erence propagation and that has p1

0

= d0; d1; : : : ; d7. Four of the
�ve di�erence vectors are in general di�erent. For all other message di�erence
patterns, the number of iterations with a non-zero di�erence pattern and the
number of distinct di�erence vectors in � are both larger.

If the di�erence pattern in the hashing state and/or bu�er is not equal to
zero after the loading of the last input block, the di�usion and nonlinearity of
the transformation formed by the 32 �nal Pull iterations are assumed to make
the controlled generation of terminal collisions infeasible.

1

8

33

18
50

1

57

64

Fig. 3. Di�erence propagation in the bu�er of Panama.

d
0

- d
2

d
1

d
4

d
3

d
6

d
5

-d
7

-- -- -- -

d
0

- d
2

d
1

d
4

d
3

d
6

d
5

- d
7

-- -- -- -

d0- d2 d1d4d3 d6d5 -d7 -- -- -- -

d
0

- d
2

d
1

d
4

d
3

d
6

d
5

-d
7

-- -- -- -

d0- d2 d1d4d3 d6d5- d7-- -- -- -

t = 1

t = 8

t = 18

t = 25

t = 33

Fig. 4. Di�erence patterns in �.

In internal collisions the di�erence pattern in the state and bu�er is zero
before the �nal hashing state has been reached. Clearly, this restricts the di�er-
ence pattern in the input sequence to superpositions of instances of the simple
di�erence pattern given in the left-hand side of Fig. 3. These input di�erence
patterns give rise to non-zero di�erence vectors in � over a span of at least 32
iterations. We believe that controlling the di�erential trails in the hashing state
over these large numbers of iterations to obtain a collision is too hard to be a
threat to the security of the hash function.

One can avoid the need for this type of control over large numbers of iter-
ations by eliminating di�erences in the state immediately after they have been
created. As can be seen in Figure 4, this must however be repeated for 5 di�erent

instances, with the same set of input di�erences.

4.4 The stream encryption scheme

For every Pull iteration 16 words of the bu�er are injected into the state and
8 state words are given at the output. In the short term, the number of bu�er
bits that are injected into the state is twice as large as the number of bits that
are given at the output. It can be checked that this is the case for any number
of iterations smaller than 12. The feedback from the state to the bu�er causes
the bu�er contents to be renewed every 32 iterations. These factors cause the
correlations between output bits and linear combinations of state and bu�er bits
to be too small to be of practical use for cryptanalysis.

Resynchronization attacks [4] should be made infeasible by the 32 blank Pull
iterations after loading the initialization blocks. Because of the feedback from
the state to the bu�er in the Pull mode, the state and almost all bu�er stages
depend in a complicated way on these blocks at the end of the initialization
phase. We expect that there are no exploitable 32-round di�erential trails.

5 Implementation aspects

Panama's heavy reliance on bitwise-logical operations on 32-bit words make it
well suited to implementation on 8, 16, or 32-bit processors, except that its use
of 32-bit rotations does somewhat favor 32-bit architectures.

Accesses to bu�er b and operations between bu�er b and state a can all be
performed 64-bits at a time on processors that support this word size. Since a is
not an integer multiple of 64-bits a dummy 32-bit word should be pre-pended to
a0 for properly aligning fa1; a2g through fa15; a16g to 64-bit boundaries. Bu�er
b should also be 64-bit aligned.

So, � and can be performed e�ciently with word sizes up to 32-bits, while
� especially favors 32-bit architectures. � and � can both be performed e�-
ciently with word sizes up to 64-bits. In the following analysis we concentrate
on Panama's performance on 32-bit processors.

5.1 Theoretical performance limits

To determine the maximum theoretical performance of Panama in its hash and
stream cipher modes on a suitably parallel processor architecture we seek to
identify the software critical path through the algorithm. This is the closed path
through the algorithm's computational owgraph that has the largest weighted
instruction count, the weighting being the number of cycles of latency associated
with each type of instruction.

For instance, on most processors the result of a simple operation like an
addition or XOR can be used in the subsequent cycle - these instructions are
said to have a one cycle latency. On modern high performance processors it
is also common for shifts and rotates to be single-cycle instructions. However

reading from memory takes several cycles. Even when the data is in the CPU's
local cache it commonly su�ers a two or three cycle latency on modern deeply
pipelined processors.

We start by examining the software critical path through �. For each of ,
�, �, and �, all seventeen 32-bit words a0 to a16 can in principle be updated
in parallel. The software critical path through these four routines is a total
of 7 cycles (3 cycles for , 1 cycle for �, 2 cycles for �, and 1 cycle for �), all
corresponding to single-cycle instructions.

Many RISC processors have enough registers to hold state a in its entirety, so
that when encrypting or hashing a long block of data we need not keep accessing
any of a0 through a16 from memory. However, bu�er b is too large to be register
based and is most e�ciently implemented as a �xed circular-bu�er in memory,
with moving pointers used to create the appearance of a shift-register.

Notably, since the accesses to b are not data-dependent (i.e. not table-look-
ups) all address calculations can be done well in advance and do not contribute
to the software critical path. Also, since the stages which are read are several
stages delayed from those that are written, the read-data can in principle be
fetched one or more update cycle ahead of time, from which it becomes clear
that updating the bu�er is not on the software critical path.

We now explore the number of 32-bit instructions needed for each iteration
of Push and Pull. If state a is fully held in registers and the rotation amounts in
� are all hard-coded, then � entails a total of 16 reads (from bu�er stages 4 and
16 for Pull, or input p and bu�er stage 16 for Push) and 17� 7 logical operations
(actually one less than this because the zero-rotation need not be performed).

Updating bu�er b involves 16 reads (bu�er stages 24 and 31), 16 XOR oper-
ations, and 16 writes (bu�er stages 0 and 25), plus a number of operations to
update the pointers to the accessed stages in order to simulate a shift register. As
a minimum these involve an increment and mask operation per pointer. Reading
from stage 31 and writing to stage 0 takes only one pointer, likewise for stages 24
and 25 because of the way the circular-bu�er is used to emulate a shift-register.
Consequently there are four pointers to be updated for a Pull iteration, and
three for a Push. The masking operation implements circular arithmetic on the
pointers - a convenience arising from the bu�er size being a power of two.

For each Pull iteration, applying the cipher output to the data stream in-
volves 8 reads from the plaintext bu�er, 8 XOR operations, and 8 writes to the
ciphertext bu�er, plus at least one additional instruction to update a pointer to
these bu�ers. Each iteration ciphers 32 bytes of data.

In the case of Push we have already accounted for reading the input p under
our discussion of �, so all that is left is updating the pointer to the input data.

Thus, ignoring for the moment the few extra instructions necessary for main-
taining the loop, we have a workload of 189 instructions for each iteration of Push
and 215 instructions for each Pull. This is equivalent to about 5.9 instructions
per byte hashed or 6.7 instructions per byte enciphered.

An estimate of how many fully pipelined execution units the algorithmmight
usefully exploit can be obtained by dividing the total number of operations per

iteration by the number of cycles in the critical path. This number ideally should
be no less than the number of parallel execution paths in the target processors
so that no CPU resources are left idle.

ForPanama this works out to 189 or 215 instructions per iteration divided by
7 cycles per iteration, from which we estimate that the hashing and encryption
modes might reasonably exploit processors with up to 27 and 31 parallel 32-bit
datapaths respectively.

5.2 Benchmarked performance

The generous amount of parallelism in Panama lends itself naturally to e�-
cient implementation on a processor capable of a high degree of instruction-
level parallelism. To demonstrate the impressive throughputs achievable in such
cases a highly optimized implementation was developed for the Philips TriMedia
TM-1000 processor. The TriMedia processor is a Very Long Instruction Word
(VLIW) CPU containing �ve 32-bit pipelined execution units sharing a common
set of 128 32-bit registers. All �ve execution units can perform arithmetic and
logical operations, but loads, stores, and shifts are each supported by only two of
them. The two execution units that support shifts are distinct from the two that
support loads and stores. Given an appropriate instruction mix the processor
can issue up to �ve instructions per clock cycle.

The operations in Panama can be e�ciently expressed in C-code except for
the bitwise rotations. The optimized implementation was written completely in
C-code except for resorting to a library call to access the processor's native 32-bit
rotate instruction.

Since the parallelism present in the Panama algorithm is vastly more than is
available in the TriMedia CPU we would hope to be able to completely saturate
the processor, i.e. have very few vacant instruction slots. However, there may be
other resource constraints that prevent this. For instance, � calls for the intensive
use of rotate instructions, of which the TriMedia CPU can only issue two per
cycle. Filling the other three instruction slots on each cycle requires overlapping
the execution of � with that of and/or �. For the benchmarked implementation
each of these routines was expressed as fully unrolled in-line code, leaving the
TriMedia C-compiler to recognize and exploit the allowable overlap between ,
�, and �.

The loop for iterating Pull mode compiled into 234 TriMedia assembly
instructions. The di�erence between this and the 215 instructions previously
counted comes from the instructions for maintaining the loop and from some
additional overhead involved in the pointer updates associated with making the
circular bu�er appear as an LFSR. The scheduled code was tightly packed by
the compiler into 47 instruction-issue cycles, i.e. a sustained 4.98 instructions
per cycle were scheduled for issue, out of a theoretical maximum of 5. This is an
unusually high utilization of the TriMedia CPU even compared to its e�ciency
on media-processing tasks for which it was designed.

Compiled code for Push showed comparable overhead and code density.

The optimized C-code was benchmarked on a 100MHz TriMedia processor
by encrypting or hashing a 128Kbyte data bu�er. We choose this bu�er size as
several times larger than the on-chip data cache so as to make the reported per-
formance be representative of the sustainable encryption or hashing performance
to external memory, in this case comprised of synchronous DRAM. At the level
of performance achieved by Panama external memory bandwidth can become
a signi�cant factor in the overall performance. For the encryption benchmark
the data bu�er was encrypted in-place so as to minimize the performance loss
arising from memory accesses. No o�-chip cache was present (the Trimedia chip
does not actually support o�-chip cache).

An encryption throughput of 4.7bits per cycle was achieved, equivalent to
1.7cycles per byte, or 470Mbps on a 100MHz processor. This includes all loop-
overhead and cycles lost to cache misses, memory accesses, etc. This is uncom-
monly fast among stream ciphers. For comparison, two other acknowledged fast
software ciphers { RC4 [12], and SEAL [11], are reported as capable of 10.6cycles
per byte and 3.5 cycles per byte, or 75Mbps and 230Mbps respectively when
benchmarked under these same conditions [3]. Panama is also slightly faster on
this processor than the variants of WAKE described in [3].

Notably, Panama achieves its speed advantage not by having the lowest
work-factor among these ciphers. For instance SEAL has a work factor of 4.25
instructions per byte on the TriMedia processor compared to Panama's 6.7.
Rather, Panama's speed advantage comes from the substantial degree of par-
allelism present in the algorithm, an attribute that can be well exploited by
a VLIW processor such as the TriMedia. Accordingly it should be noted that
Panama's advantage may be diminished when running on processors having less
instruction-level parallelism than the CPU reported here.

On the TriMedia processor Panama achieves a hashing throughput of 5.1bits
per cycle, equivalent to 1.6 cycles per byte, or 510Mbps on a 100MHz device.
We are not aware of published performance �gures for implementations of other
currently popular hash functions on the TriMedia processor against which to
directly compare Panama's speed. Still, a simple comparison shows that the
per-byte workload of Panama is similar to that of MD4 [9], the fastest member
of the family of hash functions to which MD5, SHA-1 and RIPEMD-160 all
belong. Benchmarks for these popular hashes have been published for the Intel
Pentium processor in [2] from which we can make comparisons to Panama.

Performance of an optimized C-code implementation of Panama on a
200MHz Pentium Pro (using a library function for rotate) was measured at
198Mbps for ciphering and 214Mbps for hashing, i.e. a throughput of 0.99bits
per cycle for ciphering and 1.07bits per cycle for hashing. This compares to
hashing speeds reported in [2] for SHA-1 and RIPEMD-160 of 0.24bits per cycle
and 0.21bits per cycle respectively for optimized C-code3. [2] also reports opti-

3 [2] reports performance on a 90MHz Pentium, while here we report performance on
a 200MHz Pentium Pro. By converting all results into the normalized measure of
bits per cycle we attempt to provide a uniform basis for comparison, however the
reader is cautioned that no allowance has been made for the architectural di�erences

mized assembly-code versions of SHA-1 and RIPEMD-160 as achieving 0.54bits
per cycle and 0.44bits per cycle respectively. It is currently unknown what fur-
ther speed improvement could be achieved for Panama by assembly coding it,
but even without such improvement it shows about a 2� speed advantage over
assembly coded versions of these other hashes.

Since the Pentium Pro can in principle issue two arithmetic or logical in-
structions per cycle compared to �ve for the TriMedia chip one may wonder
why the throughput per cycle of Panama on the Pentium Pro is barely one
�fth that achieved on the TM-1000. In part the reason is that Panama's large
state cannot be maintained in the small register set of the 'x86 architecture,
with the result that code for the Pentium Pro requires massively more load and
store instructions than are required for the TriMedia, or for that matter other
RISC processors with a generous complement of registers. Since both SHA-1
and RIPEMD-160 are substantially unhampered by the limited register set of
the 'x86 architecture, we would expect Panama's advantage over them to be all
the greater on processors not having this limitation.

In considering Panama's suitability to an application it should be borne in
mind that the performance �gures reported are for large block sizes. When hash-
ing small blocks, or encrypting with frequent key changes or resynchronization,
the overhead of the accompanying 32 blank Pull iterations may signi�cantly im-
pact the performance. A key change or resynchronization takes about as long as
encrypting 1000 bytes. Similarly, each hashed block has a �xed overhead equiv-
alent to hashing about 1000 bytes.

6 Conclusions

We have presented a new cryptographic module capable of cryptographic hashing
and stream encryption suited for applications where large amounts of data must
be protected. It has been shown that the inherent parallelism allows extremely
fast software implementations on VLIW processors.

References

[1] E. Biham and A. Shamir, \Di�erential cryptanalysis of DES-like cryptosystems,"
Journal of Cryptology, Vol. 4, No. 1, 1991, pp. 3{72.

[2] A. Bosselaers, R. Govaerts, J. Vandewalle, \Fast Hashing on the Pentium", Ad-
vances in Cryptology { Proceedings Crypto'96 LNCS 1109, N. Koblitz, Ed.,
Springer-Verlag, 1996, pp. 298{312.

[3] C.S.K. Clapp, \Optimizing a fast stream cipher for VLIW, SIMD, and superscalar
processors," Fast Software Encryption, LNCS 1267, E. Biham, Ed., Springer-
Verlag, 1997, pp. 273{287.

[4] J. Daemen, \Cipher and hash function design strategies based on linear and dif-
ferential cryptanalysis," Doctoral Dissertation, March 1995, K.U.Leuven.

between the Pentium and Pentium Pro.

[5] H. Dobbertin, A. Bosselaers, B. Preneel, \RIPEMD-160: A Strengthened version
of RIPEMD," Fast Software Encryption, LNCS 1039, D. Gollmann, Ed., Springer-
Verlag, 1996, pp. 71{82.

[6] FIPS 180, Secure Hash Standard, Federal Information Processing Standard (FIPS),
Publication 180, National Institute of Standards and Technology, US Department
of Commerce, Washington D.C., May 1993.

[7] FIPS 180-1, Secure Hash Standard, Federal Information Processing Standard
(FIPS), Publication 180-1, National Institute of Standards and Technology, US
Department of Commerce, Washington D.C., April 1995.

[8] B. Preneel and P.C. van Oorschot, \On the Security of Two MAC Algorithms",
Advances in Cryptology { Proceedings Eurocrypt'96 LNCS 1070, U.M. Maurer, Ed.,
Springer-Verlag, 1996, pp. 19{32.

[9] R.L. Rivest, The MD4 message-digest algorithm, Request for comments (RFC)
1320, Internet Activities Board, Internet Privacy Task Force, April 1992.

[10] R.L. Rivest, The MD5 message-digest algorithm, Request for comments (RFC)
1321, Internet Activities Board, Internet Privacy Task Force, April 1992.

[11] P. Rogaway and D. Coppersmith, \A Software-Optimized Encryption Algorithm,"
Fast Software Encryption, LNCS 809, R. Anderson, Ed., Springer-Verlag, 1994,
pp. 56{63.

[12] B. Schneier, Applied Cryptography, Second Edition, John Wiley & Sons, 1996,
pp. 397{398.

