
1

CNS
Lecture 3

•authentication

•passwords

•hash functions

MD5, SHA, RIPEMD-160, Whirlpool

fun things you can do with hashish hashing

assignments

root:.6PcYNUPBpzxw:0:0::/root:/bin/csh
toor::0:0::/root:/bin/csh
alice:nfVWnUWaAuDSE:500:500:Alice:/home/alice:/bin/csh
mallory:yyv4LsfKaOHAE:503:500:Mallory:/home/mallory:/bin/csh
bob:nfVWnUWaAuDSE:501:500:Bob:/home/bob:/bin/csh
eve:xxP6v.rTrWTb2:505:500:Eve:/home/eve:/bin/csh

CNS Lecture 3 - 2

In the news
•gcc 4.1 has stackguard
•Problem in OpenSSL with SHA public key of 3 and padding

CVE-2006-4339 see cve.mitre.org
•Bank of Ireland will refund phishing losses (160K euros)
•Spammer conviction upheld (9 years in prison)
•Microsoft Publisher could allow remote execution

Cost-benefit analysis for the attacker (Clark & Davis ’95)

Mb + Pb > Ocp + OcmPaPc
Mb monetary benefit to attacker
Pb psychological benefit to attacker
Ocp cost of committing the crime
Ocm cost of conviction to the attacker
Pa probability of arrest
Pc probability of conviction

Hacking Tip 7345:

Reverse engineer a “fixed”
application or DLL and
develop an exploit ☺

CNS Lecture 3 - 3

You are here …

Attacks & Defenses
• Risk assessment9
• Viruses9
• Unix security9
• authentication
• Network security

Firewalls,vpn,IPsec,IDS

• Forensics

Cryptography

•Random numbers

•Hash functions

MD5, SHA,RIPEMD

•Classical + stego

•Number theory

•Symmetric key

DES, Rijndael, RC5

•Public key

RSA, DSA, D-H,ECC

Applied crypto

•SSH

•PGP

•S/Mime

•SSL

•Kerberos

•IPsec

•Crypto APIs

•Coding securely

CNS Lecture 3 - 4

authentication

• verifying an identity
• people authentication
• password schemes
• challenge/response
• token based
• public key systems
• biometrics
• host/message authentication

Why authentication?
•access control
•authorization
•auditing

CNS Lecture 3 - 5

Design criteria

• strength (resistance to attacks)
• speed
• ease of use
• accuracy (false positives)
• manageability
• reliability

CNS Lecture 3 - 6

Authenticating people

computer verifying who you are

• what you know
• what you have
• what you are

Best: at least two of the above

people identify people by
face
voice
ID
reference

2

CNS Lecture 3 - 7

Is it you?

What you are … biometrics
•facial verification (picture ID)
•retinal scanner
•fingerprint reader
•hand geometry reader (Olympics/customs)

verification, not identifcation
•voiceprints
•keystroke timing
•handwriting

concerns: expense, false accept/reject

What you have
•ATM card
•dongle (bootup, software protect)
•SecurID (server, modified login)
•crypto calculator (challenge/response)
•smart card/disk

You know when you've lost it

combine with what you know: PIN or signature

special readers / software mods

What you know
•password
•PIN
•Social security number
•Mother’s maiden name

don’t know when you’ve lost/shared it!

CNS Lecture 3 - 8

Smart cards

• memory (cash card)
• secret-key crypto cards
• public-key crypto cards

(FORTEZZA)
• need RS-232 reader or PCMCIA or

USB or smartdisk
• need card loading/init device
• ISO standards

excellent for storing private keys
or biometric data

Provide both logical and physical
access control (DoD)

CNS Lecture 3 - 9

Smart card features

• reader powered (9600 baud)
• tamper-resistant (self-destruct)
• 8-bit CPU, 8KB ROM, 3K EEPROM, RAM
• Write/Erase Cycles: 10,000
• Data life (storage) : 10 years

crypto co-processor (FORTEZZA pcmcia)
• 160-bit CPU
• mod arithmetic
• crypto software (RSA, skipjack)

Smart card readers (RS-232, USB, PCMCIA)
• login supported by linux, Windows

CNS Lecture 3 - 10

Authentication scorecard

CNS Lecture 3 - 11

Authentication protocols

one-way
• password
• challenge/response
• public-key

two-way (mutual authentication)
• trusted intermediary (Kerberos)
• public-key

issues
• secrets on server
• vulnerabilities of protocol -- cleartext, replay, dictionary attack, other?
• performance of protocol
• cost (user/server)
• convenience

CNS Lecture 3 - 12

Athentication protocols
USER HOST database

----- name, password --> clear, crypt, hash

----- name, securid# --> server software

USER's machine*
--------name ------> clear/hashed

<------ R -------- challenge (nonce)
--------- (R)key ------> (encrypt or keyed-hash)

-------name (time)key -----> clear/hashed

-----------name ------> (Novell 3) hash of key H(key)
<------------- R ------- challenge

----- H(R,H(key)) ------>

---------name-----> KDC (clear) (more later, Kerberos)
<------(ticket)key ----

-----name---> NT (hash of key), LAN mgr
<------------R--- challenge

-----(R)H(key) ------->

Our ncp asnmt 3?

Our ncp asnmt 4

3

CNS Lecture 3 - 13

Mutual authentication

USER's machine* HOST

------name ----> clear/crypt
<--------R1 -------

------(R1)key -------->
--------R2 ----------->

<-------(R2)key ---------

• later: KDC (Kerberos) can provide mutual authentication

• authentication can be done with public/private keys too (later)

CNS Lecture 3 - 14

Authentication vulnerabilities

• eavesdropping (sniffers)
• password database
• replay (need random numbers, good time stamp, sequence number)
• offline guessing (dictionary attack, know R1 and (R1)key)
• Network session maybe hijacked after authentication! /

CNS Lecture 3 - 15

Passwords -- what you know

• easy to remember
• hard to guess
• historical: military, espionage

password vulnerabilities
• easy to guess
• read file where passwords are stored
• eavesdropper/sniffer
• sys mgr may know/decrypt
• off-line search
• strong passwords: inconvenient, people write them down!

CNS Lecture 3 - 16

Strong passwords

• special characters, numbers, upper/lower case
• would like 64 bits of randomness, so:

–with 6-bit alphabet would need 11 characters
–pronouncable, need 16 characters
–choose your own, need 32 characters

• human mind is not a good password storage device

“Yes, I use my dog's name as my password.
My dog's name is 4X(!m,q@V-2
and I change his name every 90 days.”

CNS Lecture 3 - 17

Password storage

• clear text (secret file, security through obscurity -- Ha!)
• encrypted
• encrypted on authentication server (kerberos, securid server)
• hashed (one-way encrypted or hash function)
• hashed and shadowed

CNS Lecture 3 - 18

UNIX passwords

• 8 characters (truncated)
• 256 possibilities (7-bit ASCII)
• assigned by sys mgr
• change with passwd
• hashed and encoded in /etc/passwd

–Hopefully shadowed
• portable hash string
• newer OS's provide MD5 encoding, longer phrases

root:ab7er6hjkjase:0:0:root:/root:/bin/csh
bin:x:1:1:bin:/bin:/sbin/nologin
daemon:x:2:2:daemon:/sbin:/sbin/nologin
adm:x:3:4:adm:/var/adm:/sbin/nologin
lp:x:4:7:lp:/var/spool/lpd:/sbin/nologin
ftp:x:14:50:FTP User:/var/ftp:/sbin/nologin
nobody:x:99:99:Nobody:/:/sbin/nologin
ntp:x:38:14:ntp:/etc/ntp:/sbin/nologin
apache:x:48:48:Apache:/var/www:/bin/false
nscd:x:28:28:NSCD Daemon:/:/bin/false
ldap:x:55:55:LDAP User:/var/lib/ldap:/bin/false
xfs:x:43:43:X Font Server:/etc/X11/fs:/bin/false
gdm:x:42:42::/var/gdm:/sbin/nologin
dunigan:x:23673:20:TomDunigan:/home/dunigan:/bin/csh

4

CNS Lecture 3 - 19

Unix passwords
• user enters name and password
• host hashes password and compares
• 13 character string (Dqd2z5wN/3xyE)
• 2 character salt (random, 4096)

(void) time(&salt);
saltc[0] = salt & 077;
saltc[1] = (salt>>6) & 077;
... asciify
return(crypt(pwbuf,salt));

crypt()
•uses 25 iterations of modified DES

(EP is different, thwart DES hardware),
• encrypts 0 using salt/pwbuf as "key",
• encode 64-bit cipher output to 6-bit alphanumerics

salt
•reduces identical password encodings
•discourages pre-hashed dictionary
•does not affect time to search for one password

CNS Lecture 3 - 20

Password vulnerabilities

• ask user
• guess
• brute force (1000 MIP years)
• dictionary attack (CRACK)
• eavesdrop (sniffer)
• shoulder surfing
• failed attempts not logged (WWW)
• trojan horse/library

CNS Lecture 3 - 21

CRACK -- p1Ssw0rd crack3r

• Dictionary and variations, guess and verify
• widely available (others: John the Ripper, plus crackers for Windows password databases)
• can use multiple machines (parallel)
• Tries variations of user names, gecos field then dictionary
• rule based ../Scripts/dicts.rules
• caps, substitution, reverse, add a number

Pluralise every significant one of the above
MORE-THAN 2, NOT-CONTAIN ANY NON-ALPHA, LOWERCASE, PLURALISE
>2!?Alp

Any alphaword >2 & <8 chars long, append a digit or simple punctuation
since few ppl add non alpha chars to a already non-alpha word
MORE-THAN 2, LESS-THAN 8, NOT ANY NON-ALPHA, LOWERCASE, APPEND <whatever>
>2<8!?Al0
>2<8!?Al1
>2<8!?Al2
>2<8!?Al3

Lowercase every pure alphabetic word and reverse it
MORE-THAN 2, NOT-CONTAIN ANY NON-ALPHA, LOWERCASE, REVERSE
>2!?Alr

Lots of password cracking software for various applications

CNS Lecture 3 - 22

countermeasures
• shadow file
• enforce strong passwords

– Minimum length
– combo of numerics, alphabetics, special characters
– Language models (Markov Æ)
– CRACK-like dictionary tests

Bloom filter Hashi(wordj)=y (y [0,N-1])
N-bit “hash” table, reject if tabley is set

– OS generate list
• scan for weak passwords (CRACK)
• password aging
• eliminate dormant accounts
• log failures (?)
• disable after n failures (?)
• trusted hosts (rlogin)
• ssh public/private key
• Kerberos

Don't use re-usable passwords!

Markov model

•language letter transition
probabilities (digrams, trigrams)

•Reject if password fits model

CNS Lecture 3 - 23

One-time passwords

• SecurID or SafeWord tokens
• challenge/response (SecureNet, SNK)
• code-book
• Skey (OPIE)
• requires OS mods (login, ftpd, su) or special login shell/account
• may require server (Radius, securid/ACE) (and tokens … $$)
• new user setup harder

CNS Lecture 3 - 24

SecurID

• 2-factor authentication (card and PIN)
• need to issue cards (battery life?)… costs $$
• need ACE server (DB of username + card secret)
• need to modify login/su on enterprise servers to use ACE server
• hash of time and card secret (64-bit), every 60s
• login asks for name and current hash and PIN
• Brainard's proprietary hash reverse engineered
• security in card secret, not in secrecy of hash algorithm

ACE server

Given userid, PIN, hash:

get token secret from DB (userid)

read clock and hash (time + secret)

if “close” (try range of times), then OK host

modified
login

+ PIN

5

CNS Lecture 3 - 25

skey/opie

• challenge/response
• public domain (Skey, OPIE) and commercial clients for MAC/PC
• use from MAC/PC/workstation
• need password list for Xterminal or vt100 (or use PDA)
• based on Lamport paper and a one-way function (hash)
• modify (PAM) login/ftp/su etc.
• can configure to allow only skey logins
• can restrict user logins (net,host,tty)
• can use UNIX password from console

CNS Lecture 3 - 26

Skey implementation
• client needs key program
• Server data files /etc/skeykeys /etc/skey.access
• server needs keyinit plus modified login, ftpd, su

#ifdef KEY
permit_passwd = keyaccess(pwd, tty, hostname, (char *) 0);
pp = key_getpass("Password:", pwd, permit_passwd);
p = key_crypt(pp, salt, pwd, permit_passwd);
#else /* KEY */
pp = getpass("Password:");
p = crypt(pp, salt);
#endif /* KEY */

• with keyinit user creates hash using a seed, count, and passphrase
• H(H(H(.......H(seed,phrase))))...) count hashes
• host stores username,count,seed,hash
/etc/skeykeys
lpz 0037 ms68016 5f7fe2ac49089496 Sep 04,1996 16:15:38
phil 0032 ms08157 6d516f9931c703d6 Jul 16,1996 23:34:55
jgreen 0097 ra57824 a395980a0af44403 Apr 18,1996 13:48:01
mii 9999 ms34539 be21074bfa31b842 Feb 05,1996 15:31:36

CNS Lecture 3 - 27

Using skey
need client with key command
• user sends name
• host sends challenge (count-1, seed)
• user calculates Hcount-1 (seed,passphrase) and sends encoding of hash, z
• hosts does one more hash, H(z), and compares to database
• if ok, user is logged in
• host stores count-1, and hash, z, from user
• telnet thdsun.epm.ornl.gov
login: dunigan
s/key 87 ic69188
(s/key required)
Password:

(in another window or with skey app.)
key 87 ic69188
Reminder - Do not use this program while logged in via
telnet or rlogin.

Enter secret password:xxxxxxxxxxxxxx
GARB OVAL FIB AGEE BEAN AMES

CNS Lecture 3 - 28

Authentication summary

• two-factor authentication best
• use strong passwords, but still no help against sniffing!
• avoid re-usable passwords for login
• even with skey/securid -- session can be hijacked after

authentication! /
• encryption (ssh) can prevent sniffing and hijacking
• strong passwords can thwart dictionary attacks
• long pass phrases thwart brute force (ssh, opie, or PGP)
• strong passwords are needed for protecting private keys

– in public key crypto (netscape, pgp, ssh) -- private key file is encrypted
with 3DES/IDEA/etc.

CNS Lecture 3 - 29

Hash functions

MD5, SHA, RIPEMD-160, tiger, panama, whirlpool
fun things you can do with hash functions

PAIN privacy, authenticity, integrity, non-repudiation

Crypto Toolkit
1. secret-key crypto
2. public-key crypto
3. big-number math
4. random numbers
5. prime numbers
6. hash functions

CNS Lecture 3 - 30

Hash functions
one-way function:

transformation of a message of arbitrary length into
a fixed-length (128+ bit) number (hash, checksum,digest,fingerprint)

• uses
–message/file integrity
–message authenticity (MAC)
–detect change (error/malicious)
–password hashing
– in digital signatures (motivation)
–key fingerprints
–authentication (skey, SecurID)
–pseudo-random numbers
–encrypting (exportable)

hashing zoo

MD2,MD4,MD5

SHA

RIPEM

PANAMA

WHIRLPOOL

CBC encryption

Tiger

……

6

CNS Lecture 3 - 31

TOO simple hashes

• parity bit
• XOR of blocks or chars
• checksum (UNIX sum 16-bit)

sum file
• TCP/IP/UDP checksums
• CRC (division instead of addition)

–Remainder of division by polynomial
–CRC32 fast: shift, XOR, table lookup
–detects more bit error patterns
–used for error detection (Ethernet)
–more later on poly arithmetic

all easily forged
active adversary vs just error detection

CNS Lecture 3 - 32

Strong hash

• z=H(m) is easy/fast to compute
• given z, computationally infeasible to find m such that

H(m)=z (one-way)
• given m, infeasible to find an m' such that

H(m')=H(m) (weak collision resistance)
• infeasible to find two random messages m and m' such that

H(m') = H(m) (strong collision resistance), birthday attack
• strength in proportion to size of z (at least 160 bits)
• could choose any compression function (strength vs speed)
• no unconditionally provable one-way functions are known
• can only prove a function fails /
• the test of time

Note: there will be collisions, since mapping lots of bits into a few bits.

CNS Lecture 3 - 33

Hash algorithms
• recursive block, with padding and length, initialization vector (IV)
• multiple rounds/steps
• compression function

– logical functions, shifts, additive constants
–Or based on encryption function (whirlpool)

• 32-bit (efficient,byte-order?)
• avalanche (bit propagation)

–one-bit change in message, results in massive change of hash value
• hash value "random"

Add in some text, some
constants (πφ√3), and stir

CNS Lecture 3 - 34

Structure of hash functions

•Input broken into blocks, last block padded with length value

•Each block is passed into compression function along with output from
previous step

compression function is usually made up of multiple rounds of “mixing”

•Output of final step is hash

•First step uses a (fixed) initialization value (IV)

CNS Lecture 3 - 35

Blocking, padding, and hashing

• Pad message with length info out to multiple of block size
• Process a “block” at a time (512 bits MD5, SHA-1; 1024 SHA-512)
• Iterate accumulating “running hash”

CNS Lecture 3 - 36

MD5

• son of MD2, MD4 (find collisions in a minute)
• 128-bit digest
• 32-bit word units, 512-bit blocks
• 4 rounds of 16 steps per block

one word per step
• used by PGP, IP security, Tripwire, Skey,

software dn.
• Weak? collision found with a specific IV…worse
• IV: variations on 0123456789abcdef
• 64 additive constants Ti derived from sin(i)
• 32-bit addition (e.g., mod 232)
• Four round functions (32-bit words)
• Pad message with 10000…0 and 64-bit

length so last block is 512 bits
I(b,c,d) = c ⊕ (b ∨ d’)4

H(b,c,d) = b ⊕ c ⊕ d3

G(b,c,d) =(b ∧ c) ∨(b ∧ d’)2

F(b,c,d) = (b ∧ c) ∨(b’ ∧ d)1

Primitive functionRound

MD2
256-bit blocks
128-bit hash
16 rounds
XOR with bytes of pi

MD4
512-bit blocks, 128b hash
3 rounds of 16 steps
3 primitive functions
Steps are not chained

7

CNS Lecture 3 - 37

MD5 round

• Round processes 16 words (512 bits)
• Round functions F,G,H,I
• Constants T[i]
• X[i] ith word of block
• 16 words are permuted in rounds 2, 3,

and 4
(1 + 5i) mod 16
(5 + 3i) mod 16

7i mod 16
• Feed 4x32-bits words to next round

or result
• Start with 4x32-bit IV

CNS Lecture 3 - 38

Input words are shifted each step

32-bit unit (A,B,C,D,Xk,Ti)

32-bit addition

Primitive functions (f,g,h,i)

Data word (Xk)

Additive constants (Ti)

Circular left shift (rotate word)

CNS Lecture 3 - 39

SHA

• 160-bit digest developed by NIST
• 32-bit word units, 512-bit blocks
• 4 rounds x 20 steps per block
• NIST design choices undocumented?

–similar to MD4
• slower, stronger than MD5
• IV: variations on 0123456789abcdef
• 4 additive constants Kt SQRT{2,3,5,10}
• Rotates (S) and addition mod 232

• Primitive function

Step
0-19 F(b,c,d) = (b ∧ c) ∨(b’∧d)
20-39 F(b,c,d) = b ⊕ c ⊕ d
40-59 F(b,c,d) = (b ∧ c) ∨(b ∧ d) ∨(c ∧ d)
60-79 F(b,c,d) = b ⊕ c ⊕ d

CNS Lecture 3 - 40

Input (Wt) words XOR with 1-bit rotate of previous
input words. Constants Kt

CNS Lecture 3 - 41

SHA variations

CNS Lecture 3 - 42

MD5 vs SHA

MD5 SHA

32-bit adds 4 4

logical 2-3 2-4 varies per step

rotates 1 2

total CPU/round 8 8-10

mem reads 2 2

reg reads 4 5

reg writes 1 2

total mem/round 7 9

total rounds 64 80

•SHA more secure (160 vs 128), neither are adequate today – use 256 or 512

•MD5 vulnerable to cryptanalytic attack

•$10M (’94 dollars) find a collision in 24 days

•MD5 faster (see table Æ)

•Both are simple

•Big vs little endian

8

CNS Lecture 3 - 43

RIPEMD-160

• avoid MD4/5 weaknesses – designed to resist cryptanalysis
• 160 bit output (vs 128)
• 10 rounds (2x5) of 16 steps
• steps like MD5 plus a rotation
• parallel steps -- stronger against collisions
• word permutations to increase separation
• strong circular left shifts (shifts of 5 to 15 bits)
• 32-bit addition
• Round constants (SQRT and cube root (2,3,5,7))
• 5 primitive functions
• slightly slower than SHA or MD5

Step
0 -15 F(b,c,d) = b ⊕ c ⊕ d
16-31 F(b,c,d) = (b ∧ c) ∨ (b’∧d)
32-47 F(b,c,d) = (b ∧ c’) ⊕ d
48-63 F(b,c,d) = (b ∧ d) ∨ (c ∧ d’)
64-79 F(b,c,d) = b ⊕ (c ∨ d’)

CNS Lecture 3 - 44
16-words (X) are permuted for each round. Constants Kj

CNS Lecture 3 - 45

∞

CNS Lecture 3 - 46

panama

• 32-bit word based
• XOR, rotates,OR,permutes
• like linear feedback shift register (later)
• 256-bit input blocks
• IV: 0
• 32 rounds, 4 steps/round
• strong: 1KB chaining state, 256-bit output

–MD5/RSA/RIPEM have only 128 or 160 bit state
• nonlinear, fast diffusion (avalanche: 4 rounds)
• faster than MD*/SHA/RIPEM for large blocks

–Slow for small blocks, have to prime and drain state

avalanche – effect of changing 1 bit

One round of panama

8 bits affected in 1 round

CNS Lecture 3 - 47

tiger

• 64-bit word based
• XOR, add, subtract, multiply (5,7,9)
• permute, shift, 4 S-boxes (8x64) (substitution)
• 3 rounds, 8 steps/round
• nonlinearity from S-boxes
• strong avalanche: 3 steps
• 512-bit input blocks
• 192-bit output (3x64)
• IV: variations on 0123456789abcdef
• fast on 64-bit CPUs

CNS Lecture 3 - 48

whirlpool
• Uses AES-like encryption function (W) to mix bits

–Based on polynomial arithmetic but fast (shift’s and XOR’s)
–Added to OpenSSL 0.9.9

• 512-bit hash
• More secure? … test of time

9

CNS Lecture 3 - 49

Things to do with a hash

• file checksums (tripwire/software distribution)
• user authentication, one-time password (skey, Securid)
• digital signatures
• message authentication MAC (keyed hash)
• encryption
• pseudo random number generation for keys, primes, nonce…
• mixing function for hardware random bits
• key update with master key K, H(K,ri),

ri is known random value
• distill passphrase to an encryption key (PKCS5)

CNS Lecture 3 - 50

File integrity

• shareware file signatures
–Create a separate signature file with pgp –sab file.txt

md5sum mydist.tar > mydist.md5
• vendor patch files
• checksums of your/system files (e.g., tripwire)

–Protect the checksum file (offline, burn a CD, digitally sign)

From gnupg.org download page (integrity check) MD5

b1890f5dfacd2ba7ab15448c5ff08a4e gnupg-1.2.6.tar.bz2
56b10a6f444fff2565f4d960a11b2206 gnupg-1.2.6.tar.gz
3d5199fd729e2cf254a267c6935eeeaf gnupg-1.2.5-1.2.6.diff.gz

Hacker could modify tar file and fix MD5 checksum on website,
so digital signatures of tar files are even better.

gpg --verify gnupg-1.2.6.tar.bz2.sig

CNS Lecture 3 - 51

Hashing -- tripwire

• Verify file integrity (intrusion detection, forensics)
• Files: policy, database(hashes), reports, keys

–Policy says which files to check and their importance
• Hashes: CRC32, MD5, SHA, HAVAL

“if you can’t tie a good knot, tie lots of them”
• Hash DB and policy file protected with ElGamal pub/private keys (or read-only

media)
• Create initial file signatures (“clean” system)
• Verify: reports changes/additions, notes critical files
• Troubles with legitimate file changes – data base update

Can tripwire detect a trojan tripwire ????
Are YOU running tripwire?

CNS Lecture 3 - 52

Authenticating with a hash

• Opie/skey one-time password
H(H(H(… H(salt,password)))…)

• proving you know a secret without revealing the secret
challenge-response (challenges R1 and R2 are random numbers)

USER workstation HOST
name, R1 ---------->

<----- Hash(key,R1)-----
<------ R2 ------------

Verify Hash(key,R1)
------ Hash(key,R2)---> verify

• digital signatures encrypt hash of message with sender's private
key (compact, faster than public key encrypt of whole message)

CNS Lecture 3 - 53

Generating a key

• Use hash function to generate one or more keys from a password
• key = hash(password)
• better: key = hash(password, salt, counter)
• or other variations see PKCS5 (RFC 2898)

CNS Lecture 3 - 54

MAC
Message authentication code (keyed hash)
• message integrity/authenticity (not privacy) MAC = C(K,M)
• protect against active attack (Eve can modify data stream)
• Use encryption or hash function for C()

Seal of authenticity

-from the king

-tamper-resistant

ssh v1 (weak C)

If MAC fails, save
decryption time

10

CNS Lecture 3 - 55

Hash based MACs (HMAC)
Message authentication code (keyed hash)

• Try:

–send msg,Hash(msg) --nope
–send msg,Hash(key,msg) -- nope (appendable)
–send msg,Hash(msg,key) -- better
–send msg and only half of Hash(msg,key)
–send msg, Hash(key||opad,Hash(key||ipad,msg))

• HMAC (RFC2104) used in IPsec (truncate to 96 bits)
• attacking HMAC-MD5 much harder than attacking MD5
• OLDER ALTERNATIVE: use final output of CBC encryption as MAC

or encrypt all of message including hash (ssh v1 used CRC32), or CMAC,
but export-controlled /

CNS Lecture 3 - 56

⊕

⊕

HMAC

CNS Lecture 3 - 57

HMAC – keyed hash

• RFC2104 actually suggests using truncated final value,
e.g. HMAC-MD5-96 or HMAC-SHA-80
used in IPsec and lots of network crypto

• Truncation (send only 96 bits of hash)
–Shorter message (faster transmission)
–Makes it harder for Eve to guess key
–But is hash value TOO short ? Can Eve find collisions (birthday

attack)? Not really, can’t do offline guessing without key – so you
need to capture lots of M, HMACk(M) pairs

• ipad and opad each flip half of the bits of the key and when each
are then hashed, we generate 2 pseudorandom keys

CNS Lecture 3 - 58

MAC using encryption

• Use final output of chained encryption (CBC-MAC) FIPS 113 ANSI X9.17
• Use weak/faster checksum (CRC) but encrypt it (ssh v1)
• But encryption is often slower than HMAC and export-contolled /

• CBC-MAC has a block-extension attack, use CMAC instead
–Derive second key (K1) from original key K and XOR in in final step

K1

CNS Lecture 3 - 59

Universal MAC (UMAC)

• Combo of fast, simple hash then encrypt or HMAC for security
• Work with word-size units for fast computation
• Assume small (< 4Kbytes) messages (e.g. network) M= M1 M2 …
• Recipe:

–Generate 1024 32-bit subkeys Ki from key and a 512-bit hash key H
–HM = (M1+K1)x(M2+K2) + (M3+K3)x(M4+K4) + …

• Word-size dot product– fast (MMX)
–UMAC = HMAC-SHA1H(HM || counter)
–Sender/receiver share key K and 64-bit counter, increment counter for

each message
• IETF is looking to standardize (RFC 4418)
• Order of magnitude faster than HMAC
• Secure ? Test of time?

CNS Lecture 3 - 60

SecurID keyed hash

•Each token has unique 64-bit key and a clock

•Every 60 seconds key is hashed with time and display updated

•4 rounds, 64 steps per round (shift, XOR, byte subtraction)

•Key-dependent permutations

•Round keys are XOR of key with output of previous round

•The ACE server has token secret key DB and hash implemented
in server to verify (userid,PIN,hash) from user/token (ref.
securid.c)

Newer tokens use SHA?

round 2
⊕

⊕

⊕

⊕

32-bit time

64-bit key

round 1

expansion

round 4

round 3

permute

permute

convert

display

64 bits

11

CNS Lecture 3 - 61

Encyption with a hash function

• compute a (pseudo) one-time pad with secret key
b1= Hash(key, IV)
bi = Hash(key,b i-1)

• XOR msg pi with bi ci = pi ⊕ bi

• receiver generates bi and decrypts ci ⊕ biÆ pi ⊕ bi ⊕ bi = pi

• stream cipher (more later)
• exportable
• used by RADIUS/TACACS+

CNS Lecture 3 - 62

Hash attacks
• clearly there are collisions, but it is infeasible to find one when you

need it
• forgery -- find x' such that H(x') = H(x), weak collision
• find a pair x and x' such that H(x') = H(x),

have Bob sign H(x) but then substitute message x'
if 2n hashes, birthday attack need try only 2 n/2

• 2128 weak -- longer hash is better, use RIPEM/SHA (> 160)
• strength of hash is strength of compression function
• one-way: H(x) reveals nothing about x
• for a MAC if you can guess the key, then you can forge a message

(dictionary attacks)
• Hashes used for random numbers (e.g., keys) need to withstand

cryptanalytic attacks

CNS Lecture 3 - 63

MD5 (SHA-1?) collisions
• Code exists now to create collisions!

–Examples, win32 .exe’s with same 16-bit
checksum, same 32-bit CRC and same MD5
hash!

–Examples, 2 postscript files
–Examples, public key cert that uses MD5

• MD5 signature on 2 files
–Right, 2 files eventually differ (avalanche)
–Left, 2 files collide, but end up with same hash
–Collision software has to search a while to

find right stuff to add to 2nd file
–Takes advantage of length extension property

of hash algorithms
• MD5 and SHA-1 are weak (HMAC’s OK)

CNS Lecture 3 - 64

performance
• HMAC MD5 part of IPv6/IPsec specs

–concern it is too slow, weak?
–byte-order
–slow: bit operations, carry-based scrambling, rotates
– limited parallelism because of chaining
–faster: PANAMA, Tiger, UMAC, Whirlpool

• XOR MAC (Bellare)
–parallelizable, incremental (random block updates), provable
–Hashkey(blockindex,msgblock)
–XOR the hashes of each block with the hash of the counter, C
– C = C+1; z= Hk(C) ⊕ Hk(1,M1) …⊕Hk(n,Mn)
–send the message, hash, and counter – {M,z,C}
–Receiver verifies using shared secret, k

• Maybe you don’t want parallelism -- defeat high-speed attacks?

CNS Lecture 3 - 65

Hashing speed

openssl speed md5 sha1 rmd160
type 16 bytes 64 bytes 256 bytes 1024 bytes 8192 bytes
md5 18056.45k 63987.05k 189244.42k 372775.59k 513728.51k
sha1 16069.07k 53976.28k 137615.27k 231720.96k 289390.59k
rmd160 15465.35k 45976.60k 103148.46k 150882.65k 174637.06k

• Crypto++ benchmarks (hashing 1 MB)
Algorithm data rate (MB/s)
MD5 217
SHA1 68
SHA-512 11
RIPEMD-160 53
Tiger 38
Panama 303
Whirlpool 12

CNS Lecture 3 - 66

Hashing software – command line

md5 file (or md5sum)

sha file

OpenSSL supports

md2 md4 md5 sha sha1 sha256 sha512 rmd160

openssl md5 tst.c
MD5(tst.c)= 701e3948596ca492746863bff0288b7c

12

CNS Lecture 3 - 67

Hasing software – API
// compile with -lssl
#include <openssl/md5.h>

struct MD5_CTX mdctx;
unsigned char md5_hash[16];

MD5_Init(&mdctx);
MD5_Update(&mdctx,buffer1,lth1);
MD5_Update(&mdctx,buffer2,lth2);
MD5_Final(md5_hash, &mdctx);

(also a MD5(data,data_lth,hash))

Java

MessageDigest md = MessageDigest.getInstance("SHA");

md.update(Buffer1);

md.update(Buffer2);

byte [] hash = md.digest();

CNS Lecture 3 - 68

Hashing with EVP (EnVeloPe) in OpenSSL

#include <openssl/evp.h>
const EVP_MD *m;
EVP_MD_CTX ctx;
unsigned char *ret;

OpenSSL_add_all_digests ();
if (!(m = EVP_get_digestbyname (“sha1”)))
exit(1);

if (!(ret = (unsigned char *) malloc (EVP_MAX_MD_SIZE)))
exit(2);

EVP_DigestInit (&ctx, m);
EVP_DigestUpdate (&ctx, buf, len);
EVP_DigestFinal (&ctx, ret, olen);

•Be crypto agile… in case SHA-nnn is found weak
–Use config or protocol negotiation to select algorithm

CNS Lecture 3 - 69

HMAC programming

• Message integrity with keyed hash
• OpenSSL

–Incremental HMAC_Init(), HMAC_Update, HMAC_Final
–Single-shot
HMAC(EVP_MD *evp_md , *key,keylth,*msg,msglth,*result, *resultlth)
unsigned char result[EVP_MAX_MD_SIZE];
HMAC(EVP_sha1(),hmackey,strlen(hmackey),msg, msglth, result ,&dlen);

• Procedure:
–zero hmac field in message and do hmac, copy result to hmac field
–To verify, save hmac from message, zero hmac field, do hmac and

compare result to saved hmac from message
• Best practice: hmac key is different from encryption key

CNS Lecture 3 - 70

Next time …

Random numbers, steganography, and classical crypto

Assignment 3 (PGP) due Saturday (make your directory and .plan
word readable)

Assignment 4 will take some debugging time … try it before next
class.

Try to solve the two challenges on the
class4 web page! ☺

class4

Lectures

1. Risk, viruses

2. UNIX vulnerabilities

3. Authentication & hashing

4. Random #s classical crypto

5. Block ciphers DES, RC5

6. AES, stream ciphers RC4, LFSR

7. MIDTERM /

8. Public key crypto RSA, D-H

9. ECC, PKCS, ssh/pgp

10. PKI, SSL

11. Network vulnerabilities

12. Network defenses, IDS, firewalls

13. IPsec, VPN, Kerberos, secure OS

14. Secure coding, crypto APIs

15. review

