

You are here		
Attacks & Defenses • Risk assessment • Viruses • Unix security • authentication • Network security Firewalls,vpn,IPsec,IDS • Forensics	Cryptography •Random numbers •Hash functions MD5, SHA, RIPEMD •Classical + stego	Applied crypto •SSH •PGP •S/Mime •SSL
	•Number theory •Symmetric key DES, Rijndael, RC5 •Public key	•Kerberos •IPsec •Crypto APIs •Coding securely
CNS Lecture 3 - 3	RSA, DSA, D-H,ECC	

Total Cost of	Acquisition Cost	What are the initial acquisition costs? Include all additional hardware, software, servers, readers, services, etc. associated with acquiring the authentication solution.
Total Cost of Ownership	Deployment Cost	What are the costs to deploy the authentication solution? This includes the distribution of any necessary hardware or software; ease of installation; ease of setup and configuration; training of end-user; etc.
	Operating Cost	 What are the ongoing operating costs? This may include costs for replacement (e.g., expired / lost / stolen / broken) authentication device; ongoing management; upgrade; vendor support; help desk support; Ho.
	Convenience/ Ease of Use	What kinds of end-user population() will be supported? How easy is it for end-users to learn how to use the authentication method? How convenient is it for end-users to use the authentication method, day in and day out
(users)	Portability	 How portable is the authentication method? Can it reliably be used to gain access from multiple locations (office, home, airport, hotel, kicek, etc.)
	Multi-Purpose	 Can the authentication method be used for more than one purpose? e.g., network areas, physical acces, application access (shole ID badge, electronic signature, store value, etc. Does the authentication neethod leverage a device that is itself used for multiple purpose? e.g., RC, IDA, phys., etc.
Strategic Fit	Relative Security	How strong is the authentication? How secure is the implementation? Is it adequate for the information being protected? Does in rever negulatory requirements (if any) for the protection of information?
system)	Interoperability/ Back-end Integration	Does the authentication solution work natively with multiple products? Oose it work only with the installation of additional software? How easy is it to integrate with back end resources or applications? What resources and applications need to be supported?
	Robustriess/Scale	 Does the authentication solution scale to the degree required now? Three years from now?
	Future Flexibility	What future options may be available from the selection of this authentication solution (whether you currently intend to use them or not?) What future options might be of intervel?

>2!?Alp

Percentage Password Matched

26

skey/opie

- challenge/response
- public domain (Skey, OPIE) and commercial clients for MAC/PC
- use from MAC/PC/workstation
- \bullet need password list for Xterminal or vt100 (or use PDA)
- based on Lamport paper and a one-way function (hash)
- modify (PAM) login/ftp/suetc.
- can configure to allow only skey logins
- can restrict user logins (net,host,tty)
- can use UNIX password from console

CNS Lecture 3 - 25

25

Skey implementation

SILA	SHA-250	SHA-384	SHA-512
160	256	384	512
< 264	< 2 ⁶⁴	< 2128	< 2128
512	512	1024	1024
32	32	64	64
80	80	80	80
80	128	192	256
	160 < 2 ⁶⁴ 512 32 80 80	$\begin{array}{c cccc} 160 & 256 \\ < 2^{64} & < 2^{64} \\ \hline 512 & 512 \\ 32 & 32 \\ 80 & 80 \\ \hline 80 & 128 \\ \end{array}$	$\begin{array}{c ccccc} 160 & 2.56 & 3.84 \\ <2^{64} & <2^{128} \\ 512 & 512 & 1024 \\ 32 & 32 & 64 \\ 80 & 80 & 80 \\ 80 & 128 & 192 \\ \end{array}$

				• 32
Table	12.8 A Comparison of	MD5. SHA-1, and RIP	EMD-160	• x0
				• like
	MD5	SHA-1	RIPEMD-160	• 25
Digest length	128 bits	160 bits	160 bits	• 1/2:
Basic unit of processing	512 bits	512 bits	512 bits	
Number of steps	64 (4 rounds of 16)	80 (4 rounds of 20)	160 (5 paired rounds of 16)	• 52
Maximum message size	00	264 - 1 bits	8	• sti
Primitive logical functions	4	4	5	–
Additive constants used	64	4	9	• 10
Endianness	Little-endian	Big-endian	Little-endian	
				• 126
				-

Things to do with a hash

25

- file checksums (tripwire/software distribution)
 user authentication, one-time password (skey, Securid)
- digital signatures
- message authentication MAC (keyed hash)
- encryption
- pseudo random number generation for keys, primes, nonce...
- mixing function for hardware random bits
- key update with master key K, $H(K,r_l)$, r_i is known random value
- distill passphrase to an encryption key (PKCS5)

CNS Lecture 3 - 49

Encyption with a hash function

- compute a (pseudo) one-time pad with secret key b_i = Hash(key, IV)
 - $b_1 = \text{Hash}(\text{key,b}_{1-1})$
- XOR msg p₁ with $b_1 = c_1 = p_1 \oplus b_1$
- receiver generates b_i and decrypts $c_1 \oplus b_1 \rightarrow p_1 \oplus b_1 \oplus b_1 = p_1$
- stream cipher (more later)
- exportable
- used by RADIUS/TACACS+

CNS Lecture 3 - 61

Hash attacks

- $\ensuremath{\,^\circ}$ clearly there are collisions, but it is infeasible to find one when you need it
- forgery -- find x' such that H(x') = H(x), weak collision
- find a pair x and x' such that H(x') = H(x), have Bob sign H(x) but then substitute message x' if 2ⁿ hashes, birthday attack need try only 2^{n/2}
- $\bullet~2^{128}$ weak -- longer hash is better, use RIPEM/SHA (>160)
- strength of hash is strength of compression function
- one-way: H(x) reveals nothing about x
- \bullet for a MAC if you can guess the key, then you can forge a message (dictionary attacks)
- Hashes used for random numbers (e.g., keys) need to withstand cryptanalytic attacks

-1

CNS Lecture 3 - 62

25

HMAC programming		Next time		
 Message integrity with keyed hash OpenSSL Incremental HMAC_Init(), HMAC_Update, HMAC_Final Single-shot HMAC(EVP_MD *evp_md, *key,keylth, *mag,maglth, *result, *resultlth) unsigned char result(EVP_MAX_MD_SIZE); BMAC(EVP_Shal(),hmackey,strlen(hmackey),msg, msglth, result ,&dlen); Procedure: zero hmac field in message and do hmac, copy result to hmac field To verify, save hmac from message, zero hmac field, do hmac and compare result to saved hmac from message Best practice: hmac key is different from encryption key 		Random numbers, steganography, and classical crypto Assignment 3 (PGP) due Saturday (<i>make your directory and .plan</i> <i>word readable</i>) Assignment 4 will take some debugging time try it before next class. Try to solve the two challenges on the class4 web page! © class4	1. 2. 3. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.	Lectures Risk, viruses UNIX vulnerabilities Authentication & hashing Random #s classical crypto Block ciphers DES, RC5 AES, stream ciphers RC4, LFSR MIDTERM ® Public key crypto RSA, D-H ECC, PKC5, sshygp PKI, SSL Network derense, ID5, firewalls Network vulnerabilities Network versense, ID5, firewalls IPsac, VPN, Kerberos, secure OS Secure coding, crypto APIs review
CNS Lecture 3 - 69	20	CNS Lecture 3 - 70		